Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Trees with Given Stability Number and Minimum Number of Stable Sets

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We study the structure of trees minimizing their number of stable sets for given order n and stability number α. Our main result is that the edges of a non-trivial extremal tree can be partitioned into n − α stars, each of size \({\lceil\frac{n-1}{n-\alpha}\rceil}\) or \({\lfloor\frac{n-1}{n-\alpha}\rfloor}\) , so that every vertex is included in at most two distinct stars, and the centers of these stars form a stable set of the tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alameddine A.F.: Bounds on the Fibonacci number of a maximal outerplanar graph. Fibonacci Q. 36(3), 206–210 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Bruyère V., Mélot H.: Fibonacci index and stability number of graphs: a polyhedral study. J. Combin. Optim. 18, 207–228 (2009)

    Article  MATH  Google Scholar 

  3. Deng H., Chen S., Zhang J.: The Merrifield–Simmons index in (n, n + 1)-graphs. J. Math. Chem. 43(1), 75–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Diestel R.: Graph theory. Graduate Texts in Mathematics, vol. 173, 3rd edn. Springer, Berlin (2005)

    Google Scholar 

  5. Gutman I., Polansky O.E.: Mathematical Concepts in Organic Chemistry. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  6. Heuberger C., Wagner S.: Maximizing the number of independent subsets over trees with bounded degree. J. Graph Theory 58, 49–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kahn J.: An entropy approach to the hard-core model on bipartite graphs. Combin. Probab. Comput. 10(3), 219–237 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Knopfmacher A., Tichy R.F., Wagner S., Ziegler V.: Graphs, partitions and Fibonacci numbers. Discrete Appl. Math. 155, 1175–1187 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li S., Li X., Jing W.: On the extremal Merrifield–Simmons index and Hosoya index of quasi-tree graphs. Discrete Appl. Math. 157(13), 2877–2885 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li S., Zhu Z.: The number of independent sets in unicyclic graphs with a given diameter. Discrete Appl. Math. 157(7), 1387–1395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li X., Zhao H., Gutman I.: On the Merrifield–Simmons index of trees. MATCH Commun. Math. Comp. Chem. 54, 389–402 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Lin S.B., Lin C.: Trees and forests with large and small independent indices. Chin. J. Math. 23(3), 199–210 (1995)

    MATH  Google Scholar 

  13. Mélot H.: Facet defining inequalities among graph invariants: the system GraPHedron. Discrete Appl. Math. 156, 1875–1891 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Merrifield R.E., Simmons H.E.: Topological Methods in Chemistry. Wiley, New York (1989)

    Google Scholar 

  15. Pedersen A.S., Vestergaard P.D.: The number of independent sets in unicyclic graphs. Discrete Appl. Math. 152, 246–256 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pedersen A.S., Vestergaard P.D.: Bounds on the number of vertex independent sets in a graph. Taiwanese J. Math. 10(6), 1575–1587 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Pedersen A.S., Vestergaard P.D.: An upper bound on the number of independent sets in a tree. Ars Combin. 84, 85–96 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Prodinger H., Tichy R.F.: Fibonacci numbers of graphs. Fibonacci Q. 20(1), 16–21 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Wang H., Hua H.: Unicycle graphs with extremal Merrifield–Simmons Index. J. Math. Chem. 43(1), 202–209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang M., Hua H., Wang D.: The first and second largest Merrifield–Simmons indices of trees with prescribed pendent vertices. J. Math. Chem. 43(2), 727–736 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu A., Lv X.: The Merrifield–Simmons indices and Hosoya indices of trees with k pendant vertices. J. Math. Chem. 41(1), 33–43 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu Z., Li S., Tan L.: Tricyclic graphs with maximum Merrifield–Simmons index. Discrete Appl. Math. 158(3), 204–212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Bruyère.

Additional information

G. Joret is a Postdoctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.–FNRS).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruyère, V., Joret, G. & Mélot, H. Trees with Given Stability Number and Minimum Number of Stable Sets. Graphs and Combinatorics 28, 167–187 (2012). https://doi.org/10.1007/s00373-011-1041-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-011-1041-2

Keywords

Navigation