Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Upper Bound for the Total Domination Subdivision Number of a Graph

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A set S of vertices of a graph G = (V, E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number \({{\rm sd}_{\gamma_t}(G)}\) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper, we prove that \({{\rm sd}_{\gamma_t}(G)\leq 2\gamma_t(G)-1}\) for every simple connected graph G of order n ≥ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Favaron O., Karami H., Khoeilar R., Sheikholeslami S.M.: A new upper bound for total domination subdivision numbers. Graph Comb. 25, 41–47 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Favaron, O., Karami, H., Sheikholeslami, S.M.: Bounding on total domination subdivision number of a graph. J Comb. Optim. (to appear)

  3. Favaron O., Karami H., Sheikholeslami S.M.: Disprove of a conjecture on domination subdivision number of a graph. Graph Comb. 24, 309–312 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Favaron O., Karami H., Sheikholeslami S.M.: Total domination and total domination subdivision numbers of graphs. Australas. J. Comb. 38, 229–235 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Haynes T.W., Hedetniemi S.T., van der Merwe L.C.: Total domination subdivision numbers. J. Comb. Math. Comb. Comput. 44, 115–128 (2003)

    MATH  Google Scholar 

  6. Haynes T.W., Henning M.A., Hopkins L.S.: Total domination subdivision numbers of graphs. Discuss. Math. Graph Theory 24, 457–467 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Karami, H., Khodkar, A., Sheikholeslami, S.M.: An upper bound for total domination subdivision numbers. Ars Comb. (to appear)

  8. Velammal, S.: Studies in graph theory: covering, independence, domination and related topics. Ph.D. Thesis, Manonmaniam Sundaranar University, Tirunelveli (1997)

  9. West D.B.: Introduction to Graph Theory. Prentice-Hall, NJ (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sheikholeslami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karami, H., Khoeilar, R., Sheikholeslami, S.M. et al. An Upper Bound for the Total Domination Subdivision Number of a Graph. Graphs and Combinatorics 25, 727–733 (2009). https://doi.org/10.1007/s00373-010-0877-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0877-1

Keywords

Navigation