Abstract
The family of well-orderly maps is a family of planar maps with the property that every connected planar graph has at least one plane embedding which is a well-orderly map. We show that the number of well-orderly maps with n nodes is at most 2αn+O(logn), where α≈4.91. A direct consequence of this is a new upper bound on the number p(n) of unlabeled planar graphs with n nodes, log2p(n)≤4.91n.
The result is then used to show that asymptotically almost all (labeled or unlabeled), (connected or not) planar graphs with n nodes have between 1.85n and 2.44n edges.
Finally we obtain as an outcome of our combinatorial analysis an explicit linear-time encoding algorithm for unlabeled planar graphs using, in the worst-case, a rate of 4.91 bits per node and of 2.82 bits per edge.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Bonichon, N., Gavoille, C., Hanusse, N.: An information upper bound of planar graphs using triangulation. Research Report RR-1279-02, LaBRI, University of Bordeaux, 351, cours de la Libération, 33405 Talence Cedex, France, September 2002
Bonichon, N., Gavoille, C., Hanusse, N.: An information-theoretic upper bound of planar graphs using triangulation. In: 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume 2607 of Lecture Notes in Computer Science, pages 499–510. Springer, February 2003
Bodirsky, M., Gröpl, C., Kang, M.: Generating labeled planar graphs uniformly at random. In: 30th International Colloquium on Automata, Languages and Programming (ICALP), volume 2719 of LNCS, pages 1095–1107, 2003
Bender, E.A., Gao, Z., Wormald, N.C.: The number of labeled 2-connected planar graphs. The Electronic Journal of Combinatorics 9(1), R43 (2002)
Bonichon, N., Le Saëc, B., Mosbah, M.: Optimal area algorithm for planar polyline drawings. In: 28th International Workshop, Graph - Theoretic Concepts in Computer Science (WG), volume 2573 of LNCS, pages 35–46. Springer, 2002
Bonichon, N., Le Saëc, B., Mosbah, M.: Wagner's theorem on realizers. In: 29th International Colloquium on Automata, Languages and Programming (ICALP). volume 2380 of LNCS, pages 1043–1053. Springer, 2002
Bonichon, N.: A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck paths. In: Formal Power Series & Algebraic Combinatorics (FPSAC). July 2002
Chih-Nan Chuang, R., Garg, A., He X., Kao M.-Y., Lu H.-I.: Compact encodings of planar graphs via canonical orderings and multiple parentheses. In: 25th International Colloquium on Automata, Languages and Programming (ICALP), volume 1443 of LNCS, pages 118–129. Springer, July 1998
Chiang, Y.-T., Lin, C.-C., Lu, H.-I.: Orderly spanning trees with applications to graph encoding and graph drawing. In: 12th Symposium on Discrete Algorithms (SODA), pages 506–515. ACM-SIAM, January 2001
Denise, A., Vasconcellos, M., Welsh, D. J. A.: The random planar graph. Congressus Numerantium 113, 61–79 (1996)
Frederickson, G. N., Janardan, R.: Efficient message routing in planar networks. SIAM Journal on Computing, 18(4), 843–857, August (1989)
Flajolet, P., Sedgewick,R.: Analytic combinatorics. Future book available online at the URL http://algo.inria.fr/flajolet/Publications/books.html
Gavoille, C., Hanusse, N.: Compact routing tables for graphs of bounded genus. In: 26th International Colloquium on Automata, Languages and Programming (ICALP), volume 1644 of LNCS, pages 351–360. Springer, July 1999
Goulden, I. P., Jackson, D. M.: Combinatorial Enumeration. John Wiley & Sons, 1983
Gerke, S., McDiarmid, C. J. H.: On the number of edges in random planar graphs. Combinatorics, Probability & Computing, 2002 (to appear)
Giménez, O., Noy, M.: Asymptotic enumeration and limit laws of planar graphs. preprint arXiv:Math.CO/051269
Khodakovsky, A., Alliez, P., Desbrun, M. Schröder, P.: Near-optimal connectivity encoding of 2-manifold polygon meshes. Graphical Models, 2002. To appear in a special issue
King, D., Rossignac, J.: Guaranteed 3.67V bit encoding of planar triangle graphs. In: 11th Canadian Conference on Computational Geometry. pp 146–149, August 1999
Keeler, K. Westbrook, J.: Short encodings of planar graphs and maps. Discrete Applied Mathematics 58, 239–252 (1995)
Lu, H.-I.: Improved compact routing tables for planar networks via orderly spanning trees. In: 8th Annual International Computing & Combinatorics Conference (COCOON), volume 2387 of LNCS, pages 57–66. Springer, August 2002
Liskovets, V. A., Walsh, T. R.: Ten steps to counting planar graphs. Congressus Numerantium 60, 269–277 (1987)
Munro, J. I., Raman, V.: Succinct representation of balanced parentheses, static trees and planar graphs. In: 38th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 118–126. IEEE Computer Society Press, October 1997
McDiarmid, C., Steger, A., Welsh, D. J. A.: Random planar graphs. J. Comb. Theory Ser. B 93(2), 187–205 (2005)
Osthus, D., Prömel, H. J., Taraz, A.: On random planar graphs, the number of planar graphs and their triangulations. Journal of Combinatorial Theory, Series B 88, 119–134 (2003)
Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. In: 30th International Colloquium on Automata, Languages and Programming (ICALP), volume 2719 of LNCS, pages 1080–1094. Springer, July 2003
Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics 5(1), 47–61 (1999)
Schnyder, W.: Embedding planar graphs on the grid. In: 1st Symposium on Discrete Algorithms (SODA), pp 138–148. ACM-SIAM, 1990
Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. In 42th Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society Press, October 2001.
Turán, G.: Succinct representations of graphs. Discrete Applied Mathematics 8, 289–294 (1984)
Tutte, W. T.: A census of planar triangulations. Canadian Journal of Mathematics 14, 21–38 (1962)
Wright, E. M.: Graphs on unlabelled nodes with a given number of edges. Acta Math. 126, 1–9 (1971)
Yannakakis, M.: Embedding planar graphs in four pages. Journal of Computer and System Sciences 38, 36–67 (1989)
Zhang, H., He, X.: Compact visibility representation and straight-line grid embedding of plane graphs. In: Workshop on Algorithms and Data Structures (WADS), volume 2748 of LNCS, pages 493–504. Springer, July 2003
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bonichon, N., Gavoille, C., Hanusse, N. et al. Planar Graphs, via Well-Orderly Maps and Trees. Graphs and Combinatorics 22, 185–202 (2006). https://doi.org/10.1007/s00373-006-0647-2
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s00373-006-0647-2