Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Efficient frictional contacts for soft body dynamics via ADMM

  • Research
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper addresses the longstanding challenge of soft body dynamics with frictional contact through a novel combination of Projective Dynamics for elasticity simulation and Alternating Direction Method of Multipliers for frictional contact handling. The approach utilizes parallel local strain projection for deformable bodies and nonlinear Projected Gauss-Seidel for contact with Coulomb friction, consolidated by a pre-factorized global strain propagation step. Integration of contact stabilization, Matchstick anisotropic friction, and Rayleigh damping enhances reliability and usability. Effectiveness, accuracy, and computational efficiency are demonstrated in challenging cases, including multi-layer and persistent contacts. With a CPU-based parallel implementation, our method achieves visually plausible and stable simulation results at an interactive framerate in moderate-scale scenes, showcasing its applicability across various graphics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availibility

No datasets were generated or analyzed during the current study.

References

  1. Agudo, A.: Unsupervised 3d reconstruction and grouping of rigid and non-rigid categories. IEEE Trans. Pattern Anal. Mach. Intell. 44, 519–532 (2020)

    Article  Google Scholar 

  2. Andrews, S., Erleben, K., Ferguson, Z.: Contact and friction simulation for computer graphics. In: ACM SIGGRAPH 2022 Courses, pp. 1–172 (2022)

  3. Baraff, D., Witkin, A.: Dynamic simulation of non-penetrating flexible bodies. ACM SIGGRAPH Comput. Graph. 26(2), 303–308 (1992)

    Article  Google Scholar 

  4. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pp. 43–54. Association for Computing Machinery, New York (1998)

  5. Bertails-Descoubes, F., Cadoux, F., Daviet, G., Acary, V.: A nonsmooth newton solver for capturing exact coulomb friction in fiber assemblies. ACM Trans. Graph. (TOG) 30(1), 1–14 (2011)

    Article  Google Scholar 

  6. Bouaziz, S., Martin, S., Liu, T., Kavan, L., Pauly, M.: Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33(4) (2014)

  7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends ® Mach. Learn. 3(1), 1–122 (2011)

    Google Scholar 

  8. Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans. Comput. Imaging 3(1), 84–98 (2016)

    Article  MathSciNet  Google Scholar 

  9. Chen, Y.L., Ly, M., Wojtan, C.: Unified treatment of contact, friction and shock-propagation in rigid body animation. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–2 (2023)

  10. Daviet, G.: Simple and scalable frictional contacts for thin nodal objects. ACM Trans. Graph. (TOG) 39(4), 61–1 (2020)

    Article  MathSciNet  Google Scholar 

  11. Daviet, G.: Interactive hair simulation on the GPU using ADMM. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–11 (2023)

  12. Deul, C., Charrier, P., Bender, J.: Position-based rigid-body dynamics. Comput. Animat. Virtual Worlds 27(2), 103–112 (2016)

    Article  Google Scholar 

  13. Erleben, K., Macklin, M., Andrews, S., Kry, P.G.: The matchstick model for anisotropic friction cones. In: Computer Graphics Forum, vol. 39, pp. 450–461. Wiley Online Library, Hoboken (2020)

    Google Scholar 

  14. Fang, Y., Li, M., Gao, M., Jiang, C.: Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM Trans. Graph. (TOG) 38(4), 1–13 (2019)

    Article  Google Scholar 

  15. Frâncu, M., Moldoveanu, F.: Position based simulation of solids with accurate contact handling. Comput. Graph. 69, 12–23 (2017)

    Article  Google Scholar 

  16. Gast, T.F., Schroeder, C., Stomakhin, A., Jiang, C., Teran, J.M.: Optimization integrator for large time steps. IEEE Trans. Vis. Comput. Graph. 21(10), 1103–1115 (2015)

    Article  Google Scholar 

  17. Grigorev, A., Black, M.J., Hilliges, O.: Hood: hierarchical graphs for generalized modelling of clothing dynamics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16965–16974 (2023)

  18. Han, H., Sun, M., Zhang, S., Liu, D., Liu, T.: Gpu cloth simulation pipeline in lightchaser animation studio. In: SIGGRAPH Asia 2021 Technical Communications, pp. 1–4 (2021)

  19. Lan, L., Ma, G., Yang, Y., Zheng, C., Li, M., Jiang, C.: Penetration-free projective dynamics on the GPU. ACM Trans. Graph. (TOG) 41(4), 1–16 (2022)

    Google Scholar 

  20. Lee, J., Lee, M., Lee, D.: Modular and parallelizable multibody physics simulation via subsystem-based ADMM. arXiv preprint arXiv:2302.14344 (2023)

  21. Li, J., Daviet, G., Narain, R., Bertails-Descoubes, F., Overby, M., Brown, G.E., Boissieux, L.: An implicit frictional contact solver for adaptive cloth simulation. ACM Trans. Graph. (TOG) 37(4), 1–15 (2018)

    Google Scholar 

  22. Li, J., Liu, T., Kavan, L.: Laplacian damping for projective dynamics. In: Proceedings of the 14th Workshop on Virtual Reality Interactions and Physical Simulations, pp. 29–36 (2018)

  23. Li, M., Ferguson, Z., Schneider, T., Langlois, T.R., Zorin, D., Panozzo, D., Jiang, C., Kaufman, D.M.: Incremental potential contact: intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39(4), 49 (2020)

    Article  Google Scholar 

  24. Li, M., Kaufman, D.M., Jiang, C.: Codimensional incremental potential contact. ACM Trans. Graph. 40(4) (2021)

  25. Ly, M., Jouve, J., Boissieux, L., Bertails-Descoubes, F.: Projective dynamics with dry frictional contact. ACM Trans. Graph. (TOG) 39(4), 57 (2020)

    Article  Google Scholar 

  26. Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S., Kim, T.Y.: Primal/dual descent methods for dynamics. In: Computer Graphics Forum, vol. 39, pp. 89–100. Wiley Online Library, Hoboken (2020)

    Google Scholar 

  27. Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S., Makoviychuk, V.: Non-smooth newton methods for deformable multi-body dynamics. ACM Trans. Graph. (TOG) 38(5), 1–20 (2019)

    Article  Google Scholar 

  28. Macklin, M., Müller, M., Chentanez, N.: XPBD: position-based simulation of compliant constrained dynamics. In: Proceedings of the 9th International Conference on Motion in Games, pp. 49–54 (2016)

  29. Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for real-time applications. ACM Trans. Graph. (TOG) 33(4), 1–12 (2014)

    Article  Google Scholar 

  30. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007)

    Article  Google Scholar 

  31. Müller, M., Macklin, M., Chentanez, N., Jeschke, S., Kim, T.Y.: Detailed rigid body simulation with extended position based dynamics. In: Computer Graphics Forum, vol. 39, pp. 101–112. Wiley Online Library, Hoboken (2020)

    Google Scholar 

  32. Narain, R., Overby, M., Brown, G.E.: Admm \(\supseteq \) projective dynamics: fast simulation of general constitutive models. In: Symposium on Computer Animation, vol. 1, p. 2016 (2016)

  33. Otaduy, M.A., Tamstorf, R., Steinemann, D., Gross, M.: Implicit contact handling for deformable objects. In: Computer Graphics Forum, vol. 28, pp. 559–568. Wiley Online Library, Hoboken (2009)

    Google Scholar 

  34. Peiret, A., Andrews, S., Kövecses, J., Kry, P.G., Teichmann, M.: Schur complement-based substructuring of stiff multibody systems with contact. ACM Trans. Graph. (TOG) 38(5), 1–17 (2019)

    Article  Google Scholar 

  35. Peng, Y., Deng, B., Zhang, J., Geng, F., Qin, W., Liu, L.: Anderson acceleration for geometry optimization and physics simulation. ACM Trans. Graph. (TOG) 37(4), 1–14 (2018)

    Google Scholar 

  36. Servin, M., Lacoursiere, C., Melin, N.: Interactive simulation of elastic deformable materials. In: Proceedings of Sigrad Conference, pp. 22–32. Citeseer (2006)

  37. Shi, A., Kim, T.: A unified analysis of penalty-based collision energies. Proc. ACM Comput. Graph. Interact. Tech. 6(3), 1–19 (2023)

    Google Scholar 

  38. Smith, B., Goes, F.D., Kim, T.: Stable Neo-Hookean flesh simulation. ACM Trans. Graph. (TOG) 37(2), 1–15 (2018)

    Article  Google Scholar 

  39. Tasora, A., Mangoni, D., Benatti, S., Garziera, R.: Solving variational inequalities and cone complementarity problems in nonsmooth dynamics using the alternating direction method of multipliers. Int. J. Numer. Methods Eng. 122(16), 4093–4113 (2021)

    Article  MathSciNet  Google Scholar 

  40. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 205–214 (1987)

  41. Tournier, M., Nesme, M., Gilles, B., Faure, F.: Stable constrained dynamics. ACM Trans. Graph. (TOG) 34(4), 1–10 (2015)

    Article  Google Scholar 

  42. Verschoor, M., Jalba, A.C.: Efficient and accurate collision response for elastically deformable models. ACM Trans. Graph. (TOG) 38(2), 1–20 (2019)

    Article  Google Scholar 

  43. Wang, H., Yang, Y.: Descent methods for elastic body simulation on the GPU. ACM Trans. Graph. (TOG) 35(6), 1–10 (2016)

    Google Scholar 

  44. Zhang, J., Peng, Y., Ouyang, W., Deng, B.: Accelerating ADMM for efficient simulation and optimization. ACM Trans. Graph. (TOG) 38(6), 1–21 (2019)

Download references

Acknowledgements

This work was supported in part by the National Key R &D Program of China (no. 2023YFC3604505), Natural Science Foundation of China (no. U20A20195, 62272017, 62172437), the Postdoctoral Fellowship Program of CPSF under grant number GZC20233375, Beijing Natural Science Foundation (L232065), CAS Interdisciplinary Project (JCTD- 2020-11).

Author information

Authors and Affiliations

Authors

Contributions

Siyan Zhu: Writing—original draft, Visualization, Validation, Software, Methodology. Cheng Fang: Writing—original draft, Visualization, Validation, Software, Methodology. Peng Yu: Writing—review & editing, Validation, Resources &Material, Funding acquisition. Xiao Zhai: Writing—original draft, review & editing, Methodology, Math derivation. Aimin Hao: Project administration, Resources &Material, Funding acquisition. Junjun Pan: Writing - review & editing, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Peng Yu, Xiao Zhai or Junjun Pan.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 143381 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Fang, C., Yu, P. et al. Efficient frictional contacts for soft body dynamics via ADMM. Vis Comput 40, 4569–4583 (2024). https://doi.org/10.1007/s00371-024-03438-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-024-03438-8

Keywords

Navigation