Abstract
The Jacobi set of a bivariate scalar field is the set of points where the gradients of the two constituent scalar fields align with each other. It captures the regions of topological changes in the bivariate field. The Jacobi set is a bivariate analog of critical points, and may correspond to features of interest. In the specific case of time-varying fields and when one of the scalar fields is time, the Jacobi set corresponds to temporal tracks of critical points, and serves as a feature-tracking graph. The Jacobi set of a bivariate field or a time-varying scalar field is complex, resulting in cluttered visualizations that are difficult to analyze. This paper addresses the problem of Jacobi set simplification. Specifically, we use the time-varying scalar field scenario to introduce a method that computes a reduced Jacobi set. The method is based on a stability measure called robustness that was originally developed for vector fields and helps capture the structural stability of critical points. We also present a mathematical analysis for the method, and describe an implementation for 2D time-varying scalar fields. Applications to both synthetic and real-world datasets demonstrate the effectiveness of the method for tracking features.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
No datasets were generated or analyzed during the current study.
Change history
27 July 2024
A Correction to this paper has been published: https://doi.org/10.1007/s00371-024-03577-y
References
Artamonova, I., Alekseev, V., Makarenko, N.: Gradient measure and Jacobi sets for estimation of interrelationship between geophysical multifields. In: J. Phys.: Conf. Ser. 798, 012040 (2017)
Ayachit, U.: The ParaView Guide. A Parallel Visualization Application, Kitware (2015)
Bachthaler, S., Weiskopf, D.: Continuous scatterplots. IEEE Trans. Vis. Comput. Graph. 14(6), 1428–1435 (2008)
Bhatia, H., Wang, B., Norgard, G., Pascucci, V., Bremer, P.T.: Local, smooth, and consistent Jacobi set simplification. Comput. Geom. 48(4), 311–332 (2015)
Blecha, C., Raith, F., Scheuermann, G., Nagel, T., Kolditz, O., Maßmann, J.: Analysis of coupled thermo-hydro-mechanical simulations of a generic nuclear waste repository in clay rock using fiber surfaces. In: IEEE Pacific Visualization Symposium, pp. 189–201 (2019)
Bremer, P., Bringa, E., Duchaineau, M., Gyulassy, A., Laney, D., Mascarenhas, A., Pascucci, V.: Topological feature extraction and tracking. In: J. Phys.: Conf. Ser. 78, 012007 (2007). (IOP Publishing)
Bujack, R., Yan, L., Hotz, I., Garth, C., Wang, B.: State of the art in time-dependent flow topology: interpreting physical meaningfulness through mathematical properties. Comput. Graph, Forum (2020)
Carr, H., Duke, D.: Joint contour nets. IEEE Trans. Vis. Comput. Graph. 20(8), 1100–1113 (2014)
Carr, H., Geng, Z., Tierny, J., Chattopadhyay, A., Knoll, A.: Fiber surfaces: Generalizing isosurfaces to bivariate data. Comput. Graph. Forum 34(3), 241–250 (2015)
Chattopadhyay, A., Carr, H., Duke, D., Geng, Z.: Extracting Jacobi structures in Reeb spaces. In: Proc. EuroVis - Short Papers (2014)
Chazal, F., Patel, A., Skraba, P.: Computing the robustness of roots. Manuscript, http://ailab.ijs.si/primozskraba/papers/fp.pdf (2011)
Conway, J.B.: Functions of One Complex Variable I. Graduate Texts in Mathematics. Springer, New York (2012)
Conway, J.B.: Functions of One Complex Variable II. Graduate Texts in Mathematics. Springer, New York (2012)
Copernicus Marine Service: (2024). https://marine.copernicus.eu/
Delfinado, C.J.A., Edelsbrunner, H.: An incremental algorithm for betti numbers of simplicial complexes. In: Proc. Symposium on Computational Geometry, pp. 232–239 (1993)
Doleisch, H., Muigg, P., Hauser, H.: Interactive visual analysis of hurricane isabel with SimVis. In: IEEE Visualization Contest (2004)
Edelsbrunner, H., Harer, J.: Jacobi sets of multiple Morse functions. Found. Comput. Math. 312, 35–57 (2004)
Edelsbrunner, H., Harer, J., Mascarenhas, A., Pascucci, V., Snoeyink, J.: Time-varying Reeb graphs for continuous space-time data. Comput. Geom. 41(3), 149–166 (2008)
Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Local and global comparison of continuous functions. In: IEEE Visualization 2004, pp. 275–280 (2004)
Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings. In: Proc. Symposium on Computational Geometry, SCG ’08, p. 242-250 (2008)
Edelsbrunner, H., Harer, J.L.: Computational topology: an introduction. American Mathematical Society (2022)
Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Disc. Comput. Geom. 28(4), 511–533 (2002)
Edelsbrunner, H., Morozov, D., Patel, A.: Quantifying transversality by measuring the robustness of intersections. Found. Comput. Math. 11(3), 345–361 (2011)
Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Gr. 9(1), 66–104 (1990)
Günther, T., Gross, M., Theisel, H.: Generic objective vortices for flow visualization. ACM Trans. Gr. (Proc. SIGGRAPH) 36(4), 141:1-141:11 (2017)
Hansen, C.D., Chen, M., Johnson, C.R., Kaufman, A.E., Hagen, H. (eds.): Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization. Springer, Mathematics and Visualization (2014)
Helland-Hansen, B.: Nogen hydrografiske metoder. Forh. Skand. Naturf. Mote. 16, 357–359 (1916)
Huettenberger, L., Heine, C., Garth, C.: Decomposition and simplification of multivariate data using pareto sets. IEEE Trans. Vis. Comput. Graph. 20(12), 2684–2693 (2014)
Klötzl, D., Krake, T., Zhou, Y., Hotz, I., Wang, B., Weiskopf, D.: Local bilinear computation of Jacobi sets. The Vis. Comput. 38(9–10), 3435–3448 (2022)
Klötzl, D., Krake, T., Zhou, Y., Stober, J., Schulte, K., Hotz, I., Wang, B., Weiskopf, D.: Reduced connectivity for local bilinear Jacobi sets. In: 2022 Topological Data Analysis and Visualization (TopoInVis), pp. 39–48. IEEE (2022)
Lukasczyk, J., Garth, C., Maciejewski, R., Tierny, J.: Localized topological simplification of scalar data. IEEE Trans. Vis. Comput. Graph. 27(2), 572–582 (2020)
Lukasczyk, J., Garth, C., Weber, G.H., Biedert, T., Maciejewski, R., Leitte, H.: Dynamic nested tracking graphs. IEEE Trans. Vis. Comput. Graph. 26(1), 249–258 (2020)
Lukasczyk, J., Weber, G., Maciejewski, R., Garth, C., Leitte, H.: Nested tracking graphs. Comput. Graph. Forum 36(3), 12–22 (2017)
Makela, K., Ophelders, T., Quigley, M.Y., Munch, E., Chitwood, D.H., Dowtin, A.L.: Automatic tree ring detection using Jacobi sets. arXiv:2010.08691 (2020)
Nagaraj, S., Natarajan, V.: Relation-aware isosurface extraction in multifield data. IEEE Trans. Vis. Comput. Graph. 17(2), 182–191 (2011)
Norgard, G., Bremer, P.T.: Ridge-Valley graphs: Combinatorial ridge detection using Jacobi sets. Comput. Aided Geom. Des. 30(6), 597–608 (2013)
Popinet, S.: Free computational fluid dynamics. ClusterWorld 2(6) (2004). http://gfs.sf.net/
Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: The state of the art in flow visualisation: feature extraction and tracking. Comput. Graph. Forum 22 (2003)
Raith, F., Blecha, C., Nagel, T., Parisio, F., Kolditz, O., Günther, F., Stommel, M., Scheuermann, G.: Tensor field visualization using fiber surfaces of invariant space. IEEE Trans. Vis. Comput. Graph. 25(1), 1122–1131 (2019)
Reininghaus, J., Kasten, J., Weinkauf, T., Hotz, I.: Efficient computation of combinatorial feature flow fields. IEEE Trans. Vis. Comput. Graph. 18(9), 1563–1573 (2011)
Saikia, H., Weinkauf, T.: Global feature tracking and similarity estimation in time-dependent scalar fields. Comput. Graph. Forum 36(3), 1–11 (2017)
Sharma, M., Masood, T.B., Thygesen, S.S., Linares, M., Hotz, I., Natarajan, V.: Segmentation driven peeling for visual analysis of electronic transitions. In: Proc. IEEE Visualization Conference, IEEE VIS 2021 - Short Papers, pp. 96–100. IEEE (2021)
Sharma, M., Masood, T.B., Thygesen, S.S., Linares, M., Hotz, I., Natarajan, V.: Continuous scatterplot operators for bivariate analysis and study of electronic transitions. IEEE Trans. Vis. Comput. Graph. pp. 1–13 (2023). https://doi.org/10.1109/TVCG.2023.3237768
Sharma, M., Natarajan, V.: Jacobi set driven search for flexible fiber surface extraction. In: 2022 Topological Data Analysis and Visualization (TopoInVis), pp. 49–58 (2022)
Skraba, P., Wang, B., Chen, G., Rosen, P.: Robustness-based simplification of 2D steady and unsteady vector fields. IEEE Trans. Vis. Comput. Graph. 21(8), 930–944 (2015)
Soler, M., Plainchault, M., Conche, B., Tierny, J.: Lifted wasserstein matcher for fast and robust topology tracking. In: Proc. IEEE Symp. Large Data Anal. Vis. (LDAV), pp. 23–33 (2018)
Suthambhara, N., Natarajan, V.: Simplification of Jacobi sets. In: Topological Methods in Data Analysis and Visualization: Theory. Algorithms, and Applications, pp. 91–102. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011)
Theisel, H., Seidel, H.P.: Feature flow fields. In: Proceedings of the symposium on Data visualisation 2003, pp. 141–148 (2003)
Tierny, J., Carr, H.: Jacobi fiber surfaces for bivariate Reeb space computation. IEEE Trans. Vis. Comput. Graph. 23(1), 960–969 (2016)
Tierny, J., Favelier, G., Levine, J.A., Gueunet, C., Michaux, M.: The topology toolKit. IEEE Trans. Vis. Comput. Graph. 24(1), 832–842 (2018)
Tricoche, X., Wischgoll, T., Scheuermann, G., Hagen, H.: Topology tracking for the visualization of time-dependent two-dimensional flows. Comput. & Gr. 26(2), 249–257 (2002)
Weinkauf, T., Theisel, H., Van Gelder, A., Pang, A.: Stable feature flow fields. IEEE Trans. Vis. Comput. Graph. 17(6), 770–780 (2011)
Yan, L., Bin Masood, T., Sridharamurthy, R., Rasheed, F., Natarajan, V., Hotz, I., Wang, B.: Scalar field comparison with topological descriptors: properties and applications for scientific visualization. Comput. Graph. Forum 40, 599–633 (2021)
Acknowledgements
This work is partially supported by a grant from SERB, Govt. of India (CRG/2021/005278). VN acknowledges support from the Alexander von Humboldt Foundation, and Berlin MATH+ under the Visiting Scholar program. Part of this work was completed when VN was a guest Professor at the Zuse Institute Berlin.
Author information
Authors and Affiliations
Contributions
D.M. Methodology,Theoretical Analysis, Visualization, Software, Experiments, Writing—Original Draft, Review and Editing. M.S. Experiments, Visualization, Writing—All Illustrations, Review and Editing. V.N. Conceptualization of this study, Methodology, Writing—Review and Editing.
Corresponding author
Ethics declarations
Conflict of interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Meduri, D., Sharma, M. & Natarajan, V. Jacobi set simplification for tracking topological features in time-varying scalar fields. Vis Comput 40, 4843–4855 (2024). https://doi.org/10.1007/s00371-024-03484-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-024-03484-2