Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Quaternion-based image shadow removal

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Visual effects such as shadows and highlights appear in photographs due to variations in lighting conditions. Although these effects add more meaning to the images, they pose various problems to specific computer vision algorithms. Hence, the removal of shadows and highlights is often considered as a prerequisite to such algorithms. This paper presents an interactive technique for shadow elimination from images. Our method requires user input in the form of rough strokes on the shadow region and its corresponding non-shadow region in the image. We further use quaternion rotation in the YCbCr color space to derive an image that is invariant to shadows. The actual colors of the image are finally recovered by color transfer from the original shadow image. The proposed method takes less time to generate the shadow-free image and does not necessitate the detection of shadows prior to its removal. Also, unlike the existing shadow-removal techniques, our method generates invariant image with minor texture loss. Experimental findings are reported to demonstrate the performance of our shadow-removal technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Murali, S., Govindan, V.K., Kalady, S.: A survey on shadow removal techniques for single image. Int. J. Image Graph. Signal Process. 8(12), 38–46 (2016)

    Article  Google Scholar 

  2. Finlayson, G.D., Drew, M.S., Lu, C.: Intrinsic images by entropy minimization. In: European Conference on Computer Vision, pp. 582–595. Springer (2004)

  3. Finlayson, G.D., Hordley, S.D., Lu, C., Drew, M.S.: On the removal of shadows from images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 59–68 (2006)

    Article  Google Scholar 

  4. Qu, L., Tian, J., Han, Z., Tang, Y.: Pixel-wise orthogonal decomposition for color illumination invariant and shadow-free image. Opt. Express 23(3), 2220–2239 (2015)

    Article  Google Scholar 

  5. Sasi, R.K., Govindan, V.: Shadow removal using sparse representation over local dictionaries. Int. J. Eng. Sci. Technol. 19(2), 1067–1075 (2016)

    Google Scholar 

  6. Guo, R., Dai, Q., Hoiem, D.: Paired regions for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2956–2967 (2013)

    Article  Google Scholar 

  7. Zhang, L., Zhang, Q., Xiao, C.: Shadow remover: image shadow removal based on illumination recovering optimization. IEEE Trans. Image Process. 24(11), 4623–4636 (2015)

    Article  MathSciNet  Google Scholar 

  8. Yu, X., Li, G., Ying, Z., Guo, X.: A new shadow removal method using color-lines. In: International Conference on Computer Analysis of Images and Patterns, pp. 307–319. Springer (2017)

  9. Xiao, C., Xiao, D., Zhang, L., Chen, L.: Efficient shadow removal using subregion matching illumination transfer. In: Computer Graphics Forum, vol. 32, pp. 421–430. Wiley Online Library (2013)

  10. Zhang, L., Yan, Q., Zhu, Y., Zhang, X., Xiao, C.: Effective shadow removal via multi-scale image decomposition. Vis. Comput. 35(6–8), 1091–1104 (2019)

    Article  Google Scholar 

  11. Fan, X., Wu, W., Zhang, L., Yan, Q., Fu, G., Chen, Z., Long, C., Xiao, C.: Shading-aware shadow detection and removal from a single image. Vis. Comput. 36(10), 2175–2188 (2020)

    Article  Google Scholar 

  12. Murali, S., Govindan, V., Kalady, S.: Single image shadow removal by optimization using non-shadow anchor values. Comput. Vis. Med. 5(3), 311–324 (2019)

    Article  Google Scholar 

  13. Murali, S., Govindan, V.K.: Shadow detection and removal from a single image using LAB color space. Cybern. Inf. Technol. 13(1), 95–103 (2013)

    MathSciNet  Google Scholar 

  14. Gong, H., Cosker, D.: Interactive removal and ground truth for difficult shadow scenes. JOSA A 33(9), 1798–1811 (2016)

    Article  Google Scholar 

  15. Su, Y.-F., Chen, H.H.: A three-stage approach to shadow field estimation from partial boundary information. IEEE Trans. Image Process. 19(10), 2749–2760 (2010)

    Article  MathSciNet  Google Scholar 

  16. Gong, H., Cosker, D.: User-assisted image shadow removal. Image Vis. Comput. 62, 19–27 (2017)

    Article  Google Scholar 

  17. Evans, C.J., Sangwine, S.J., Ell, T.A.: Hypercomplex color-sensitive smoothing filters. In: Proceedings 2000 International Conference on Image Processing (Cat. No. 00CH37101), vol. 1, pp. 541–544. IEEE (2000)

  18. Shi, L., Funt, B.: Quaternion color texture segmentation. Comput. Vis. Image Underst. 107(1–2), 88–96 (2007)

    Article  Google Scholar 

  19. Subakan, Ö.N., Vemuri, B.C.: A quaternion framework for color image smoothing and segmentation. Int. J. Comput. Vis. 91(3), 233–250 (2011)

    Article  MathSciNet  Google Scholar 

  20. Chen, B., Shu, H., Zhang, H., Chen, G., Toumoulin, C., Dillenseger, J.-L., Luo, L.: Quaternion zernike moments and their invariants for color image analysis and object recognition. Signal Process. 92(2), 308–318 (2012)

    Article  Google Scholar 

  21. Hiary, H., Zaghloul, R., Al-Zoubi, M.B.: Single-image shadow detection using quaternion cues. Comput. J. 61(3), 459–468 (2018)

    Article  Google Scholar 

  22. Goldman, R.: Rethinking quaternions. Synth. Lect. Comput. Graph. Anim. 4(1), 1–157 (2010)

    MATH  Google Scholar 

  23. Wang, J., Li, X., Yang, J.: Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1788–1797 (2018)

  24. Vicente, T.F.Y., Hou, L., Yu, C.-P., Hoai, M., Samaras, D.: Large-scale training of shadow detectors with noisily-annotated shadow examples. In: European Conference on Computer Vision, pp. 816–832. Springer (2016)

  25. Gryka, M., Terry, M., Brostow, G.J.: Learning to remove soft shadows. ACM Trans. Graph. (TOG) 34(5), 153 (2015)

    Article  Google Scholar 

  26. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)

    Article  Google Scholar 

  27. Yang, Q., Tan, K.-H., Ahuja, N.: Shadow removal using bilateral filtering. IEEE Trans. Image Process. 21(10), 4361–4368 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saritha Murali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, S., Govindan, V.K. & Kalady, S. Quaternion-based image shadow removal. Vis Comput 38, 1527–1538 (2022). https://doi.org/10.1007/s00371-021-02086-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02086-6

Keywords

Navigation