Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Blind image deblurring with reinforced use of edges

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Blind image deblurring tries to restore a blurred image to a clear image without the blurring kernel known in advance, which is widely required in applications such as computer vision and medical image processing. With regard to this, the key issues here are to accurately estimate the blurring kernel for deconvolution of a blurred image, and avoid the ringing artifacts in the restored image, which are both related to high-quality detection of edge information in the blurred image. Though much endeavor has been made, it is still difficult to extract edge information well in blurred images and lacks investigation how edge information causes ringing artifacts. In this paper, we make a study on this and develop novel measures to optimize edge extraction and determine suitable width and weights for the extracted edges for reinforcing their use in deblurring, by which image deblurring can be improved with ringing artifacts considerably suppressed. Experimental results demonstrate our improvements over the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27, 73 (2008)

    Google Scholar 

  2. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: Computer Vision and Pattern Recognition 2011, pp. 233–240. IEEE (2011)

  3. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: European Conference on Computer Vision, pp. 157–170. Springer, Berlin (2010)

  4. Fergus, R., Singh, B., Hertzmann, A., et al.: Removing camera shake from a single photograph. In: ACM SIGGRAPH, pp. 787–794 (2006)

  5. Javaran, T.A., Hassanpour, H., Abolghasemi, V.: Non-blind image deconvolution using a regularization based on re-blurring process. Comput. Vis. Image Underst. 154, 16–34 (2017)

    Article  Google Scholar 

  6. Yuan, L., Sun, J., et al.: Progressive inter-scale and intra-scale non-blind image deconvolution. ACM Trans. Graph. 27, 74 (2008)

    Article  Google Scholar 

  7. Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62(1), 55–59 (1972)

    Article  Google Scholar 

  8. Haralick, R.M., Shapiro, L.G.: Computer and robot vision: volume 1. IEEE Robot. Autom. Mag. 18(2), 121–122 (1992)

    Google Scholar 

  9. Yang, H., Zhang, Z., Wu, D., et al.: Image deblurring using empirical wiener filter in the curvelet domain and joint non-local means filter in the spatial domain. Imaging Sci. J. 62(3), 178–185 (2014)

    Article  Google Scholar 

  10. Cho, T.S., Joshi, N., Zitnick, C.L., et al.: A content-aware image prior. In: Computer Vision and Pattern Recognition, pp. 169–176 (2010)

  11. Dollar, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2014)

    Article  Google Scholar 

  12. Shi, J., Xu, L., Jia, J.: Discriminative blur detection features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2965–2972 (2014)

  13. Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62(1), 55–59 (1972)

    Article  Google Scholar 

  14. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astronom. J. 79, 745 (1974)

    Article  Google Scholar 

  15. Tikhonov, A.N., Arsenin, V.Y.: Solution of ill-posed problems. Math. Comput. 32(144), 491 (1977)

    Google Scholar 

  16. Liu, P.F., Xiao, L.: A fast algorithm for image restoration based on Hessian nuclear norm regularization. Acta Electron. Sin. 43(10), 2001–2008 (2015)

    MathSciNet  Google Scholar 

  17. Gupta, A., Joshi, N., Zitnick, C.L., et al.: Single image deblurring using motion density functions. In: European Conference on Computer Vision, pp. 171–184 (2010)

  18. Levin, A., Fergus, R., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26(3), 70 (2007)

    Article  Google Scholar 

  19. Levin, A., Weiss, Y.: User assisted separation of reflections from a single image using a sparsity prior. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1647–1654 (2007)

    Article  Google Scholar 

  20. Chen, L., Yang, G., Chen, Z.Y., et al.: Linearized bregman iteration algorithm for matrix completion with structural noise. Chin. J. Comput. 7, 1357–1372 (2015)

    MathSciNet  Google Scholar 

  21. Ozkan, M.K., Tekalp, A.M., Sezan, M.I.: POCS-based restoration of space-varying blurred images. IEEE Trans. Image Process. 3(4), 450–454 (1994)

    Article  Google Scholar 

  22. Welk, M., Theis, D., Weickert, J.: Variational deblurring of images with uncertain and spatially variant blurs. In: Joint Pattern Recognition Symposium, pp. 485–492. Springer (2005)

  23. Jia, J.: Single image motion deblurring using transparency. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8 (2007)

  24. Levin, A., Lischinski, D., Weiss, Y.: A closed form solution to natural image matting. In : IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 61–68 (2006)

  25. Pan, J., Liu, R., Su, Z., et al.: Kernel estimation from salient structure for robust motion deblurring. Signal Process. Image Commun. 28(9), 1156–1170 (2013)

    Article  Google Scholar 

  26. Almeida, G., Silvani, M., Souza, E., et al.: A stopping criterion to halt iterations at the Richardson–Lucy deconvolution of radiographic images. In: Journal of Physics: Conference Series: Volume 630. IOP (2015)

  27. Ramponi, G.: A rational edge-preserving smoother. In: Proceedings, International Conference on Image Processing. IEEE, vol. 1, pp. 151–154 (1995)

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1376–1381 (1998)

    Article  Google Scholar 

  30. Jinyu, Z., Yan, C., Xianxiang, H., et al.: Edge detection of images based on improved Sobel operator and genetic algorithms. In: International Conference on Image Analysis and Signal Processing, pp. 31–35 (2009)

  31. Rosenfeld, A.: The max Roberts operator is a Hueckel-type edge detector. IEEE Trans. Pattern Anal. Mach. Intell. 3(1), 101–103 (1981)

    Article  MATH  Google Scholar 

  32. He, Q., Zhang, Z.: A new edge detection algorithm for image corrupted by White-Gaussian noise. AEU-Int. J. Electron. Commun. 61(8), 546–550 (2007)

    Article  Google Scholar 

  33. Xin, W., Zhaoyun, H.: Image edge-detection based on mathematical morphology of multi-structure element algorithm. J. Liaoning Univ. Pet. Chem. Technol. 44(7), 89–91 (2008)

    Google Scholar 

  34. Zitnick, C.L.: Binary coherent edge descriptors. In: European Conference on Computer Vision, pp. 170–182 (2010)

  35. Chan, S.H., Khoshabeh, R., Gibson, K.B., et al.: An augmented Lagrangian method for total variation video restoration. IEEE Trans. Image Process. 20(11), 3097–3111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hu Z, Cho S, Wang J, et al. Deblurring low-light images with light streaks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3382–3389 (2014)

  37. Xu, L., Ren, J.S.J., Liu, C., et al.: Deep convolutional neural network for image deconvolution. In: Advances in Neural Information Processing Systems, pp. 1790–1798 (2014)

  38. Kupyn, O., Budzan ,V., Mykhailych, M., et al.: DeblurGAN: blind motion deblurring using conditional adversarial networks (2017)

Download references

Funding

This project was partially supported by the National Natural Science Foundation of China (Grant Nos. 61661146002, 61872347) and Special Plan for the Development of Distinguished Young Scientists of ISCAS (Y8RC535018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Wencheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Q., Fei, H. & Wencheng, W. Blind image deblurring with reinforced use of edges. Vis Comput 35, 1081–1090 (2019). https://doi.org/10.1007/s00371-019-01697-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01697-4

Keywords

Navigation