Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Retrieval of spatial–temporal motion topics from 3D skeleton data

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Retrieval of a specific human motion from 3D skeleton data is intractable because of its articulated complexity. We propose a context-based motion document formation method to reflect geometric variations by calculating covariance descriptors among skeletal joint locations and joint relative distances, and temporal variations by performing a coarse-to-fine segmentation on the motion sequence. The descriptors of query motion traverse all the motion categories to lock its motion words, which can be regarded as the basic units of a motion document. The discrete motion words of different spatiotemporal descriptors are also mapped to divergent index ranges to add prior knowledge of motion with temporal order to latent Dirichlet allocation (LDA). The similarity matching is based on motion-topic distributions from LDA with semantic meanings. The experiments on public datasets show the effectiveness and robustness of the proposed method over existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    MATH  Google Scholar 

  2. Bregonzio, M., Li, J., Gong, S., Xiang, T.: Discriminative topics modelling for action feature selection and recognition. In: Proceedings of the British Machine Vision Conference, pp. 1–11 (2010)

  3. Brémaud, P.: An Introduction to Probabilistic Modeling. Springer, Berlin (2012)

    MATH  Google Scholar 

  4. Chai, J., Hodgins, J.K.: Performance animation from low-dimensional control signals. ACM Trans. Graph. 24, 686–696 (2005)

    Article  Google Scholar 

  5. Chao, M.W., Lin, C.H., Assa, J., Lee, T.Y.: Human motion retrieval from hand-drawn sketch. IEEE Trans. Vis. Comput. Graph. 18(5), 729–740 (2012)

    Article  Google Scholar 

  6. Chen, C., Zhuang, Y., Nie, F., Yang, Y., Wu, F., Xiao, J.: Learning a 3d human pose distance metric from geometric pose descriptor. IEEE Trans. Vis. Comput. Graph. 17(11), 1676–1689 (2011)

    Article  Google Scholar 

  7. Chiu, C.Y., Chao, S.P., Wu, M.Y., Yang, S.N., Lin, H.C.: Content-based retrieval for human motion data. J. Vis. Commun. Image Represent. 15(3), 446–466 (2004)

    Article  Google Scholar 

  8. Du, Y., Fu, Y., Wang, L.: Skeleton based action recognition with convolutional neural network. In: 2015 3rd IAPR Asian Conference on Pattern Recognition, pp. 579–583 (2015)

  9. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1110–1118 (2015)

  10. Gowayyed, M.A., Torki, M., Hussein, M.E., El-Saban, M.: Histogram of oriented displacements (HOD): Describing trajectories of human joints for action recognition. In: International Joint Conference on Artificial Intelligence (2013)

  11. Ho, E.S., Komura, T.: Indexing and retrieving motions of characters in close contact. IEEE Trans. Vis. Comput. Graph. 15(3), 481–492 (2009)

    Article  Google Scholar 

  12. Hussein, M.E., Torki, M., Gowayyed, M.A., El-Saban, M.: Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations. In: International Joint Conference on Artificial Intelligence, vol. 13, pp. 2466–2472 (2013)

  13. Kapadia, M., Chiang, I.K., Thomas, T., Badler, N.I., Kider Jr, J.T., et al.: Efficient motion retrieval in large motion databases. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 19–28 (2013)

  14. Ke, Q., Bennamoun, M., An, S., Sohel, F., Boussaid, F.: A new representation of skeleton sequences for 3d action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4570–4579 (2017)

  15. Kitagawa, M., Windsor, B.: MoCap for Artists: Workflow and Techniques for Motion Capture. Focal Press, Waltham (2012)

    Google Scholar 

  16. Komura, T., Ho, E.S., Lau, R.W.: Animating reactive motion using momentum-based inverse kinematics. Comput. Anim. Virtual Worlds 16(3–4), 213–223 (2005)

    Article  Google Scholar 

  17. Koniusz, P., Cherian, A., Porikli, F.: Tensor representations via kernel linearization for action recognition from 3d skeletons. In: European Conference on Computer Vision, pp. 37–53 (2016)

  18. Krüger, B., Tautges, J., Weber, A., Zinke, A.: Fast local and global similarity searches in large motion capture databases. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–10 (2010)

  19. Lan, R., Sun, H., Zhu, M.: Text-like motion representation for human motion retrieval. In: International Conference on Intelligent Science and Intelligent Data Engineering, pp. 72–81 (2012)

  20. Lee, I., Kim, D., Kang, S., Lee, S.: Ensemble deep learning for skeleton-based action recognition using temporal sliding lstm networks. In: IEEE International Conference on Computer Vision, pp. 1012–1020 (2017)

  21. Li, M., Leung, H., Liu, Z., Zhou, L.: 3d human motion retrieval using graph kernels based on adaptive graph construction. Comput. Graph. 54, 104–112 (2016)

    Article  Google Scholar 

  22. Liu, F., Zhuang, Y., Wu, F., Pan, Y.: 3d motion retrieval with motion index tree. Comput. Vis. Image Underst. 92(2–3), 265–284 (2003)

    Article  Google Scholar 

  23. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal lstm with trust gates for 3d human action recognition. In: European Conference on Computer Vision, pp. 816–833 (2016)

  24. Liu, X., He, G.F., Peng, S.J., Cheung, Y.M., Tang, Y.Y.: Efficient human motion retrieval via temporal adjacent bag of words and discriminative neighborhood preserving dictionary learning. IEEE Trans. Hum. Mach. Syst. 99, 1–14 (2017)

    Google Scholar 

  25. Lv, N., Jiang, Z., Huang, Y., Meng, X., Meenakshisundaram, G., Peng, J.: Generic content-based retrieval of marker-based motion capture data. IEEE Trans. Vis. Comput. Graph. 24(6), 1969–1982 (2018)

    Article  Google Scholar 

  26. MacKay, D.J., Mac Kay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  27. Müller, M.: Information Retrieval for Music and Motion, vol. 2. Springer, Berlin (2007)

    Book  Google Scholar 

  28. Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. ACM Trans. Graph. (ToG) 24, 677–685 (2005)

    Article  Google Scholar 

  29. Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documentation mocap database hdm05. Tech. Rep. CG-2007-2, Universität Bonn (2007)

  30. Qi, T., Feng, Y., Xiao, J., Zhuang, Y., Yang, X., Zhang, J.: A semantic feature for human motion retrieval. Comput. Anim. Virtual Worlds 24(3–4), 399–407 (2013)

    Article  Google Scholar 

  31. Sedmidubsky, J., Elias, P., Zezula, P.: Effective and efficient similarity searching in motion capture data. Multimed. Tools Appl. 77(10), 12073–12094 (2018)

    Article  Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  33. Sucar, L.E., Azcárate, G., Leder, R.S., Reinkensmeyer, D., Hernández, J., Sanchez, I., Saucedo, P.: Gesture therapy: A vision-based system for arm rehabilitation after stroke. In: International Joint Conference on Biomedical Engineering Systems and Technologies, pp. 531–540 (2008)

  34. Tang, J., Meng, Z., Nguyen, X., Mei, Q., Zhang, M.: Understanding the limiting factors of topic modeling via posterior contraction analysis. In: International Conference on Machine Learning, pp. 190–198 (2014)

  35. Valcik, J., Sedmidubsky, J., Zezula, P.: Assessing similarity models for human-motion retrieval applications. Comput. Anim. Virtual Worlds 27(5), 484–500 (2016)

    Article  Google Scholar 

  36. Vögele, A., Krüger, B., Klein, R.: Efficient unsupervised temporal segmentation of human motion. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 167–176 (2014)

  37. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1290–1297 (2012)

  38. Wang, P., Lau, R.W., Pan, Z., Wang, J., Song, H.: An eigen-based motion retrieval method for real-time animation. Comput. Graph. 38, 255–267 (2014)

    Article  Google Scholar 

  39. Wang, P., Yuan, C., Hu, W., Li, B., Zhang, Y.: Graph based skeleton motion representation and similarity measurement for action recognition. In: European Conference on Computer Vision, pp. 370–385 (2016)

  40. Wang, Z., Feng, Y., Qi, T., Yang, X., Zhang, J.J.: Adaptive multi-view feature selection for human motion retrieval. Signal Process. 120, 691–701 (2016)

    Article  Google Scholar 

  41. Wu, S., Wang, Z., Xia, S.: Indexing and retrieval of human motion data by a hierarchical tree. In: Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, pp. 207–214 (2009)

  42. Xiao, J., Tang, Z., Feng, Y., Xiao, Z.: Sketch-based human motion retrieval via selected 2d geometric posture descriptor. Signal Process. 113, 1–8 (2015)

    Article  Google Scholar 

  43. Xiao, Q., Song, R.: Human motion retrieval based on statistical learning and bayesian fusion. PLoS ONE 11(10), e0164,610 (2016)

    Article  Google Scholar 

  44. Xiao, Q., Song, R.: Motion retrieval based on motion semantic dictionary and hmm inference. Soft Comput. 21(1), 255–265 (2017)

    Article  Google Scholar 

  45. Yang, S., Yuan, C., Wu, B., Hu, W., Wang, F.: Multi-feature max-margin hierarchical bayesian model for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1610–1618 (2015)

  46. Yoo, I., Vanek, J., Nizovtseva, M., Adamo-Villani, N., Benes, B.: Sketching human character animations by composing sequences from large motion database. Vis. Comput. 30(2), 213–227 (2014)

    Article  Google Scholar 

  47. Yoshitaka, A., Ichikawa, T.: A survey on content-based retrieval for multimedia databases. IEEE Trans. Knowl. Data Eng. 11(1), 81–93 (1999)

    Article  Google Scholar 

  48. Yu, T., Shen, X., Li, Q., Geng, W.: Motion retrieval based on movement notation language. Comput. Anim. Virtual Worlds 16(3–4), 273–282 (2005)

    Article  Google Scholar 

  49. Zhou, F., De la Torre, F., Hodgins, J.K.: Aligned cluster analysis for temporal segmentation of human motion. In: 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, pp. 1–7 (2008)

  50. Zhou, L., Lu, Z., Leung, H., Shang, L.: Spatial temporal pyramid matching using temporal sparse representation for human motion retrieval. Vis. Comput. 30(6–8), 845–854 (2014)

    Article  Google Scholar 

  51. Zhu, M., Sun, H., Lan, R., Li, B.: Human motion retrieval using topic model. Comput. Anim. Virtual Worlds 23(5), 469–476 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was fully supported by Grants from City University of Hong Kong (Project No. 7004681 and 7004916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Leung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men, Q., Leung, H. Retrieval of spatial–temporal motion topics from 3D skeleton data. Vis Comput 35, 973–984 (2019). https://doi.org/10.1007/s00371-019-01690-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01690-x

Keywords

Navigation