Abstract
Shadow removal is a fundamental and challenging problem in image processing field. Current approaches can only process shadows with simple scenes. For complex texture and illumination, the performance is less impressive. In this paper, we propose a novel shadow removal algorithm based on multi-scale image decomposition, which can recover the illumination for complex shadows with inconsistent illumination and different surface materials. Independent of shadow detection, our algorithm only requires a rough boundary distinguishing shadow regions from non-shadow regions. It first performs a multi-scale decomposition for the input image based on an illumination-sensitive smoothing process and then removes shadows in the basic layer using a local-to-global optimization strategy, which fuses all local shadow-free results in a global manner. Finally, we recover the texture details for the shadow-free basic layer and obtain the final shadow-free image. We validate the performance of the proposed method under various lighting and texture conditions and show consistent illumination between shadow and surrounding regions in the shadow removal results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Ssstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. PAMI 34(11), 2274–2282 (2012)
Arbel, E., Hel-Or, H.: Shadow removal using intensity surfaces and texture anchor points. IEEE Trans. PAMI 33(6), 1202–1216 (2011)
Clarenz, U., Griebel, M., Rumpf, M., Schweitzer, M.A., Telea, A.: Feature sensitive multiscale editing on surfaces. Vis. Comput. 20(5), 329–343 (2004)
Darabi, S., Shechtman, E., Barnes, C., Dan, B.G., Sen, P.: Image melding. ACM TOG 31(4), 1–10 (2012)
Finlayson, G.D., Drew, M.S., Lu, C.: Intrinsic images by entropy minimization. In: ECCV, pp. 582–595 (2004)
Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing shadows from images. In: ECCV, vol. 4(2353), pp. 823–836 (2002)
Finlayson, G.D., Hordley, S.D., Lu, C., Drew, M.S.: On the removal of shadows from images. IEEE Trans. PAMI 28(1), 59–68 (2005)
Gangnet, M., Blake, A.: Poisson image editing. In: ACM SIGGRAPH, pp. 313–318 (2003)
Gryka, M., Terry, M., Brostow, G.J.: Learning to remove soft shadows. ACM TOG 34(5), 1–15 (2015)
Guo, R., Dai, Q., Hoiem, D.: Single-image shadow detection and removal using paired regions. In: CVPR, pp. 2033–2040 (2011)
Hu, X., Fu, C.W., Zhu, L., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection and removal. In: CVPR (2018)
Khan, S.H., Bennamoun, M., Sohel, F., Togneri, R.: Automatic shadow detection and removal from a single image. IEEE Trans. PAMI 38(3), 431–446 (2016)
Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. PAMI 30(2), 228–242 (2008)
Li, H., Zhang, L., Shen, H.: An adaptive nonlocal regularized shadow removal method for aerial remote sensing images. IEEE Trans. Geosci. Remote Sens. 52(1), 106–120 (2014)
Liu, F., Gleicher, M.: Texture-consistent shadow removal. In: ECCV, pp. 437–450 (2008)
Matting, S., Chuang, Y.Y., Dan, B.G., Curless, B., Salesin, D.H., Szeliski, R.: Shadow matting and compositing. ACM TOG 22(3), 494–500 (2003)
Mohan, A., Tumblin, J., Choudhury, P.: Editing soft shadows in a digital photograph. IEEE Comput. Graph. Appl. 27(2), 23–31 (2007)
Pajak, D., Čadík, M., Aydın, T.O., Okabe, M., Myszkowski, K., Seidel, H.P.: Contrast prescription for multiscale image editing. Vis. Comput. 26(6–8), 739–748 (2010)
Qu, L., Tian, J., He, S., Tang, Y., Lau, R.W.H.: Deshadownet: a multi-context embedding deep network for shadow removal. In: CVPR, pp. 2308–2316 (2017)
Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)
Shor, Y., Lischinski, D.: The shadow meets the mask: pyramid-based shadow removal. Comput. Graph. Forum 27(2), 577–586 (2008)
Subr, K., Soler, C.: Edge-preserving multiscale image decomposition based on local extrema. ACM TOG 28(5), 1–9 (2009)
Vicente, T.F.Y., Hoai, M., Samaras, D.: Leave-one-out kernel optimization for shadow detection and removal. IEEE Trans. PAMI PP(99), 1 (2018)
Vicente, T.F.Y., Hou, L., Yu, C.P., Hoai, M., Samaras, D.: Large-Scale Training of Shadow Detectors with Noisily-Annotated Shadow Examples. Springer, Berlin (2016)
Wang, J., Li, X., Hui, L., Yang, J.: Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In: CVPR (2018)
Wu, T.P., Tang, C.K.: A Bayesian approach for shadow extraction from a single image. In: ICCV, pp. 480–487 (2005)
Wu, T.P., Tang, C.K., Brown, M.S., Shum, H.Y.: Natural shadow matting. ACM TOG 26(2), 8 (2007)
Xiao, C., She, R., Xiao, D., Ma, K.L.: Fast shadow removal using adaptive multi-scale illumination transfer. Comput. Graph. Forum 32(8), 207–218 (2013)
Xiao, C., Xiao, D., Zhang, L., Chen, L.: Efficient shadow removal using subregion matching illumination transfer. Comput. Graph. Forum 32(7), 421–430 (2013)
Xiao, Y., Tsougenis, E., Tang, C.: Shadow removal from single RGB-D images. In: CVPR, pp. 3011–3018 (2014)
Yagyu, S., Sakiyama, A., Tanaka, Y.: Edge preserving multiscale image decomposition with customized domain transform filters. In: Signal and Information Processing, pp. 458–462 (2016)
Yang, Q., Tan, K.H., Ahuja, N.: Shadow removal using bilateral filtering. IEEE TIP 21(10), 4361–4368 (2012)
Yanli, L., Xavier, G.: Online tracking of outdoor lighting variations for augmented reality with moving cameras. IEEE Trans. Vis. Comput. Graph. 18(4), 573–580 (2012)
Zhang, L., Yan, Q., Liu, Z., Zou, H., Xiao, C.: Illumination decomposition for photograph with multiple light sources. IEEE Trans. Image Process. 26(9), 4114–4127 (2017)
Zhang, L., Zhang, Q., Xiao, C.: Shadow remover: image shadow removal based on illumination recovering optimization. IEEE TIP 24(11), 4623–36 (2015)
Zhu, J., Samuel, K.G.G., Masood, S.Z., Tappen, M.F.: Learning to recognize shadows in monochromatic natural images. In: CVPR, pp. 223–230 (2010)
Acknowledgements
This work was partly supported by The National Key Research and Development Program of China (2017YF-B1002600), the NSFC (No. 61672390), Wuhan Science and Technology Plan Project (No. 2017010201010109), Key Technological Innovation Projects of Hubei Province (2018AAA062), and China Postdoctoral Science Found (No. 070307).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zhang, L., Yan, Q., Zhu, Y. et al. Effective shadow removal via multi-scale image decomposition. Vis Comput 35, 1091–1104 (2019). https://doi.org/10.1007/s00371-019-01685-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-019-01685-8