Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multiple importance sampling characterization by weighted mean invariance

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we examine the linear combination of techniques and multiple importance sampling for Monte Carlo integration from a new perspective of quasi-arithmetic weighted means. The invariance property of these means allows us to define a new family of heuristics. We illustrate our results with several rendering examples, including environment mapping and path tracing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Belzunce, F., Martinez-Riquelme, C., Mulero, J.: An Introduction to Stochastic Orders. Academic Press (2016). https://doi.org/10.1016/B978-0-12-803768-3.09977-4

  2. Bugallo, M.F., Elvira, V., Martino, L., Luengo, D., Míguez, J., Djuric, P.M.: Adaptive importance sampling: the past, the present, and the future. IEEE Signal Process. Mag. 34(4), 60–79 (2017)

    Article  Google Scholar 

  3. Bullen, P.: Handbook of Means and Their Inequalities. Springer, Dordrecht (2003)

    Book  MATH  Google Scholar 

  4. Cappé, O., Guillin, A., Marin, J.M., Robert, C.P.: Population Monte Carlo. J. Comput. Graph. Stat. 13(4), 907–929 (2004)

    Article  MathSciNet  Google Scholar 

  5. Cornuet, J.M., Marin, J.M., Mira, A., Robert, C.P.: Adaptive multiple importance sampling. Scand. J. Stat. 39(4), 798–812 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Douc, R., Guillin, A., Marin, J.M., Robert, C.P.: Minimum variance importance sampling via population Monte Carlo. ESAIM Probab. Stat. 11, 424–447 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elvira, V., Martino, L., Luengo, D., Bugallo, M.F.: Efficient multiple importance sampling estimators. IEEE Signal Process. Lett. 22(10), 1757–1761 (2015). https://doi.org/10.1109/LSP.2015.2432078

    Article  Google Scholar 

  8. Elvira, V., Martino, L., Luengo, D., Bugallo, M.F.: Generalized multiple importance sampling. ArXiv e-prints (2015). https://arxiv.org/abs/1511.03095

  9. Elvira, V., Martino, L., Luengo, D., Bugallo, M.F.: Heretical multiple importance sampling. IEEE Signal Process. Lett. 23(10), 1474–1478 (2016)

    Article  Google Scholar 

  10. Elvira, V., Martino, L., Luengo, D., Bugallo, M.F.: Multiple importance sampling with overlapping sets of proposals. In: Statistical Signal Processing Workshop (SSP), 2016 IEEE, pp. 1–5. IEEE (2016)

  11. Elvira, V., Martino, L., Luengo, D., Bugallo, M.F.: Improving population Monte Carlo: alternative weighting and resampling schemes. Sig. Process. 131(12), 77–91 (2017)

    Article  Google Scholar 

  12. Havran, V., Sbert, M.: Optimal combination of techniques in multiple importance sampling. In: Proceedings of the 13th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, VRCAI ’14, pp. 141–150. ACM, New York, NY, USA (2014). https://doi.org/10.1145/2670473.2670496

  13. He, H.Y., Owen, A.B.: Optimal Mixture Weights in Multiple Importance Sampling. ArXiv preprint arXiv:1411.3954 (2014)

  14. Kajiya, J.T.: The rendering equation. In: Evans, D.C., Athay, R.J. (eds.) Computer Graphics (SIGGRAPH ’86 Proceedings), vol. 20, pp. 143–150 (1986)

  15. Lu, H., Pacanowski, R., Granier, X.: Second-order approximation for variance reduction in multiple importance sampling. Comput. Graph. Forum 32(7), 131–136 (2013). https://doi.org/10.1111/cgf.12220

    Article  Google Scholar 

  16. Martino, L., Elvira, V., Luengo, D., Corander, J.: Layered adaptive importance sampling. Stat. Comput. 27(3), 599–623 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Neumann, L., Neumann, A., Szirmay-Kalos, L.: Compact metallic reflectance models. Comput. Graph. Forum (Eurographics’99) 18(3), 161–172 (1999)

    Article  Google Scholar 

  18. Owen, A.B., Maximov, Y., Chertkov, M.: Importance Sampling the Union of Rare Events with an Application to Power Systems Analysis. ArXiv preprint arXiv:1710.06965 (2017)

  19. Sbert, M., Havran, V.: Adaptive multiple importance sampling for general functions. Vis. Comput. (2017). https://doi.org/10.1007/s00371-017-1398-1

    Google Scholar 

  20. Sbert, M., Havran, V., Szirmay-Kalos, L.: Variance analysis of multi-sample and one-sample multiple importance sampling. Comput. Graph. Forum 35(7), 451–460 (2016). https://doi.org/10.1111/cgf.13042

    Article  Google Scholar 

  21. Sbert, M., Havran, V., Szirmay-Kalos, L.: Multiple importance sampling revisited: breaking the bounds. EURASIP J. Adv. Signal Process. 2018(1), 15 (2018). https://doi.org/10.1186/s13634-018-0531-2

    Article  Google Scholar 

  22. Sbert, M., Poch, J.: A necessary and sufficient condition for the inequality of generalized weighted means. J. Inequal. Appl. 2016(1), 292 (2016). https://doi.org/10.1186/s13660-016-1233-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Shaked, M., Shanthikumar, G.: Stochastic Orders. Springer, New York (2007). https://doi.org/10.1007/978-0-387-34675-5

    Book  MATH  Google Scholar 

  24. Veach, E.: Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. thesis, Stanford University (1997)

  25. Veach, E., Guibas, L.J.: Optimally combining sampling techniques for Monte Carlo rendering. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pp. 419–428. ACM, New York, NY, USA (1995). https://doi.org/10.1145/218380.218498

Download references

Acknowledgements

The authors acknowledge the comments by anonymous reviewers that helped to improve a preliminary version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlastimil Havran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research grants from funding agencies

The authors are funded in part by Czech Science Foundation research program GA14-19213S, by Grant TIN2016-75866-C3-3-R from the Spanish Government, by National Natural Science Foundation of China Grants Nos. 61471261 and 61771335, and by Grant OTKA K-124124 and VKSZ-14 PET/MRI 7T. V.E. acknowledges support from the Agence Nationale de la Recherche of France under PISCES project (ANR-17-CE40-0031-01), the Fulbright program, and the Marie Curie Fellowship (FP7/2007-2013) under REA grant agreement n. PCOFUND-GA-2013-609102, through the PRESTIGE program.

Appendix

Appendix

Further justification for the heuristics \(\alpha _k \propto \frac{1}{c_k v_k}\) used in Sect. 5.3 comes from the following. Observe that for \(\alpha _k \propto \frac{1}{c_k v_k}\), the second term of Eq. 13 becomes

$$\begin{aligned} \frac{H(\{c_k v_k\})^2}{H(\{c_k\}) H(\{v_k\})}, \end{aligned}$$
(15)

while for \(\alpha _k = \frac{1}{M}\) the second term of Eq. 13 becomes

$$\begin{aligned} A(\{c_k\}) A(\{v_k\}), \end{aligned}$$
(16)

where \(A(\{v_k\})\) stands for arithmetic mean of \(\{v_k\}\). We want to see that the expression in Eq. 15 is less than the expression in Eq. 16. A necessarily unfavorable case is when \(c_i \propto 1/v_i\). Let us consider without loss of generality that the proportionality constant is 1, i.e., \(c_i = 1/v_i\). In that case \(H(\{v_k\}) = A(\{c_k\})^{-1}\), \(H(\{c_k v_k\}) = 1\), and both expressions in Eqs. 15 and 16 are equal. In the necessarily favorable case \(c_i = v_i\), and the expression in Eq. 15 becomes \(\frac{H(\{v_k^2\})^2}{H(\{v_k\})^2}\), but \(\frac{H(\{v_k^2\})}{H(\{v_k\}) } \le H(\{v_k\})\), as \(H(\{v_k\})\) corresponds to a power mean with exponent \(-1\) while \(\sqrt{H(\{v_k^2\})}\) to exponent − 2. Thus \(\frac{H(\{v_k^2\})^2}{H(\{v_k\})^2} \le H(\{v_k\})^2 \le A(\{v_k\})^2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sbert, M., Havran, V., Szirmay-Kalos, L. et al. Multiple importance sampling characterization by weighted mean invariance. Vis Comput 34, 843–852 (2018). https://doi.org/10.1007/s00371-018-1522-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1522-x

Keywords

Navigation