Abstract
In visual tracking, most of the tracking methods suffer from abrupt motions. To address this problem, we propose a novel method for tracking abrupt motions using objectness embedded in smoothing stochastic sampling and improved Tree coherency approximate nearest neighbor. An improved coherence approximate nearest neighbor is utilized to estimate the promising regions as prior knowledge. Moreover, objectness is employed as an objectness proposal function for handling dynamic motions. Finally, both prior knowledge and objectness proposal are integrated into the smoothing stochastic approximate Monte Carlo to predict a new state of the target object. Experimental comparison with other tracking methods and proposed method was carried on some of the challenging video sequences. Experimental results demonstrate that our proposed method outperforms other state-of-the-art tracking methods for dealing with abrupt motions in terms of effectiveness and robustness.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gowsikhaa, D., Abirami, S., Baskaran, R.: Automated human behavior analysis from surveillance videos: a survey. Artif. Intell. Rev. 42, 747–765 (2014)
Li, Z., He, S., Hashem, M.: Robust object tracking via multi-feature adaptive fusion based on stability: contrast analysis. Vis. Comput. 31, 1319–1337 (2015)
Karami, A.H., Hasanzadeh, M., Kasaei, S.: Online adaptive motion model-based target tracking using local search algorithm. Eng. Appl. Artif. Intell. 37, 307–318 (2015)
Wu, H., Li, G., Luo, X.: Weighted attentional blocks for probabilistic object tracking. Vis. Comput. 30, 229–243 (2014)
Zhang, S., Sui, Y., Zhao, S., Yu, X., Zhang, L.: Multi-local-task learning with global regularization for object tracking. Pattern Recognit. 48, 3881–3894 (2015)
Zeng, F., Liu, X., Huang, Z., Ji, Y., Bai, L.: Robust and efficient visual tracking under illumination changes based on maximum color difference histogram and min-max-ratio metric. J. Electron. Imaging 22, 043022 (2013)
Lu, X., Yuan, Y., Yan, P.: Robust visual tracking with discriminative sparse learning. Pattern Recognit. 46, 1762–1771 (2013)
Kwon, J., Lee, K.M.: Wang-Landau Monte Carlo-based tracking methods for abrupt motions. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1011–1024 (2013)
Zhou, X., Lu, Y., Lu, J., Zhou, J.: Abrupt motion tracking via intensively adaptive Markov-Chain Monte Carlo sampling. IEEE Trans. Image Process. 21, 789–801 (2012)
Zhou, T., Lu, Y., Di, H.: Nearest neighbor field driven stochastic sampling for abrupt motion tracking. In: 2014 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. (2014)
Liang, F.: Improving SAMC using smoothing methods: theory and applications to Bayesian model selection problems. Ann. Stat. 37, 2626–2654 (2009)
Olonetsky, I., Avidan, S.: TreeCANN - K-d tree coherence approximate nearest neighbor algorithm. In: Proceedings of the 12th European Conference on Computer Vision—Volume Part IV, pp. 602–615. (2012)
Liang, F., Liu, C., Carroll, R.J.: Stochastic approximation in Monte Carlo computation. J. Am. Stat. Assoc. 102, 305–320 (2006)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38, 81–93 (2006)
Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: a review. Neurocomputing 74, 3823–3831 (2011)
Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.V.D.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4, 58:1–58:48 (2013)
Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1442–1468 (2014)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418. (2013)
Doucet, A., Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)
Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)
Čehovin, L., Kristan, M., Leonardis, A.: An adaptive coupled-layer visual model for robust visual tracking, In: 2011 International Conference on Computer Vision, vol. 23, pp. 1363–1370. (2011)
Wu, Y., Jia, N., Sun, J.: Real-time multi-scale tracking based on compressive sensing. Vis. Comput. 31, 471–484 (2015)
Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Proceedings of the 7th European Conference on Computer Vision-Part I, pp. 661–675. (2002)
Oron, S., Bar-Hillel, A., Levi, D., Avidan, S.: Locally orderless tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1940–1947. (2012)
Chen, S., Zou, B., Li, L.: A novel particle filter with implicit dynamic model for irregular motion tracking. Mach. Vis. Appl. 24, 1487–1499 (2013)
Su, Y., Zhao, Q., Zhao, L., Gu, D.: Abrupt motion tracking using a visual saliency embedded particle filter. Pattern Recognit. 47, 1826–1834 (2014)
Zhou, X., Lu, Y.: Abrupt motion tracking via adaptive stochastic approximation Monte Carlo sampling. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1847–1854. (2010)
Korman, S., Avidan, S.: Coherency sensitive hashing. In: Proceedings of the 2011 International Conference on Computer Vision, pp. 1607–1614. (2011)
Wang, F., Lu, M.: Efficient visual tracking via Hamiltonian Monte Carlo Markov chain. Comput. J. 56, 1102–1112 (2013)
Wang, F., Lu, M.: Hamiltonian Monte Carlo estimator for abrupt motion tracking. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 3066–3069. (2012)
Hong, S., Kwak, S., Han, B.: Orderless tracking through model-averaged posterior estimation. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2296–2303. (2013)
Chen, Z., Jin, H., Lin, Z., Cohen, S., Wu, Y.: Large displacement optical flow from nearest neighbor fields, In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2443–2450. (2013)
Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality, In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 604–613. (1998)
Hua, Y., Alahari, K., Schmid,C.: Online object tracking with proposal selection. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 3092–3100. (2015)
Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2189–2202 (2012)
Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: BING: binarized normed gradients for objectness estimation at 300fps, In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3286–3293. (2014)
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges, In: Proceedings European Conference Computer Vision (ECCV), pp. 391–405. (2014)
Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1532–4435 (2008)
Hare, S., Saffari , A., Torr, P.H.S.: Efficient online structured output learning for keypoint-based object tracking, In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1894–1901. (2012)
Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.H.: Fast visual tracking via dense spatio-temporal context learning. In: Proceedings of the 13th European Conference on Computer Vision—Volume Part V, pp. 127–141. (2014)
Kwon, J., Lee, K.M.: Visual tracking decomposition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1269–1276. (2010)
Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: 2011 International Conference on Computer Vision, pp. 1195–1202. (2011)
Wang, D., H., Lu, Yang, M.H.: Least soft-threshold squares tracking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2371–2378. (2013)
Zhang, K., Zhang, L., Yang, M.H.: Real-time compressive tracking. In: Proceedings of the 12th European Conference on Computer Vision—Volume Part III, pp. 864–877. (2012)
Acknowledgements
This work was supported by Chinese Government Scholarship under China Scholarship Council (CSC), National Natural Science Foundation of China (Grant No. 61175096, NSFC No. 61300082), Liaoning Natural Science Foundation (No. 2015020015) and 2016 project funded by China Postdoctoral Science Foundation (No. 2016M601306).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mbelwa, J.T., Zhao, Q., Lu, Y. et al. Objectness-based smoothing stochastic sampling and coherence approximate nearest neighbor for visual tracking. Vis Comput 35, 371–384 (2019). https://doi.org/10.1007/s00371-018-1470-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-018-1470-5