Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Objectness-based smoothing stochastic sampling and coherence approximate nearest neighbor for visual tracking

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In visual tracking, most of the tracking methods suffer from abrupt motions. To address this problem, we propose a novel method for tracking abrupt motions using objectness embedded in smoothing stochastic sampling and improved Tree coherency approximate nearest neighbor. An improved coherence approximate nearest neighbor is utilized to estimate the promising regions as prior knowledge. Moreover, objectness is employed as an objectness proposal function for handling dynamic motions. Finally, both prior knowledge and objectness proposal are integrated into the smoothing stochastic approximate Monte Carlo to predict a new state of the target object. Experimental comparison with other tracking methods and proposed method was carried on some of the challenging video sequences. Experimental results demonstrate that our proposed method outperforms other state-of-the-art tracking methods for dealing with abrupt motions in terms of effectiveness and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gowsikhaa, D., Abirami, S., Baskaran, R.: Automated human behavior analysis from surveillance videos: a survey. Artif. Intell. Rev. 42, 747–765 (2014)

    Article  Google Scholar 

  2. Li, Z., He, S., Hashem, M.: Robust object tracking via multi-feature adaptive fusion based on stability: contrast analysis. Vis. Comput. 31, 1319–1337 (2015)

    Article  Google Scholar 

  3. Karami, A.H., Hasanzadeh, M., Kasaei, S.: Online adaptive motion model-based target tracking using local search algorithm. Eng. Appl. Artif. Intell. 37, 307–318 (2015)

    Article  Google Scholar 

  4. Wu, H., Li, G., Luo, X.: Weighted attentional blocks for probabilistic object tracking. Vis. Comput. 30, 229–243 (2014)

    Article  Google Scholar 

  5. Zhang, S., Sui, Y., Zhao, S., Yu, X., Zhang, L.: Multi-local-task learning with global regularization for object tracking. Pattern Recognit. 48, 3881–3894 (2015)

    Article  Google Scholar 

  6. Zeng, F., Liu, X., Huang, Z., Ji, Y., Bai, L.: Robust and efficient visual tracking under illumination changes based on maximum color difference histogram and min-max-ratio metric. J. Electron. Imaging 22, 043022 (2013)

    Article  Google Scholar 

  7. Lu, X., Yuan, Y., Yan, P.: Robust visual tracking with discriminative sparse learning. Pattern Recognit. 46, 1762–1771 (2013)

    Article  Google Scholar 

  8. Kwon, J., Lee, K.M.: Wang-Landau Monte Carlo-based tracking methods for abrupt motions. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1011–1024 (2013)

    Article  MathSciNet  Google Scholar 

  9. Zhou, X., Lu, Y., Lu, J., Zhou, J.: Abrupt motion tracking via intensively adaptive Markov-Chain Monte Carlo sampling. IEEE Trans. Image Process. 21, 789–801 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhou, T., Lu, Y., Di, H.: Nearest neighbor field driven stochastic sampling for abrupt motion tracking. In: 2014 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. (2014)

  11. Liang, F.: Improving SAMC using smoothing methods: theory and applications to Bayesian model selection problems. Ann. Stat. 37, 2626–2654 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Olonetsky, I., Avidan, S.: TreeCANN - K-d tree coherence approximate nearest neighbor algorithm. In: Proceedings of the 12th European Conference on Computer Vision—Volume Part IV, pp. 602–615. (2012)

  13. Liang, F., Liu, C., Carroll, R.J.: Stochastic approximation in Monte Carlo computation. J. Am. Stat. Assoc. 102, 305–320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38, 81–93 (2006)

    Article  Google Scholar 

  15. Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: a review. Neurocomputing 74, 3823–3831 (2011)

    Article  Google Scholar 

  16. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.V.D.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4, 58:1–58:48 (2013)

    Google Scholar 

  17. Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1442–1468 (2014)

    Article  Google Scholar 

  18. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418. (2013)

  19. Doucet, A., Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    Book  MATH  Google Scholar 

  20. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)

    Article  Google Scholar 

  21. Čehovin, L., Kristan, M., Leonardis, A.: An adaptive coupled-layer visual model for robust visual tracking, In: 2011 International Conference on Computer Vision, vol. 23, pp. 1363–1370. (2011)

  22. Wu, Y., Jia, N., Sun, J.: Real-time multi-scale tracking based on compressive sensing. Vis. Comput. 31, 471–484 (2015)

    Article  Google Scholar 

  23. Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Proceedings of the 7th European Conference on Computer Vision-Part I, pp. 661–675. (2002)

  24. Oron, S., Bar-Hillel, A., Levi, D., Avidan, S.: Locally orderless tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1940–1947. (2012)

  25. Chen, S., Zou, B., Li, L.: A novel particle filter with implicit dynamic model for irregular motion tracking. Mach. Vis. Appl. 24, 1487–1499 (2013)

    Article  Google Scholar 

  26. Su, Y., Zhao, Q., Zhao, L., Gu, D.: Abrupt motion tracking using a visual saliency embedded particle filter. Pattern Recognit. 47, 1826–1834 (2014)

    Article  Google Scholar 

  27. Zhou, X., Lu, Y.: Abrupt motion tracking via adaptive stochastic approximation Monte Carlo sampling. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1847–1854. (2010)

  28. Korman, S., Avidan, S.: Coherency sensitive hashing. In: Proceedings of the 2011 International Conference on Computer Vision, pp. 1607–1614. (2011)

  29. Wang, F., Lu, M.: Efficient visual tracking via Hamiltonian Monte Carlo Markov chain. Comput. J. 56, 1102–1112 (2013)

    Article  Google Scholar 

  30. Wang, F., Lu, M.: Hamiltonian Monte Carlo estimator for abrupt motion tracking. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 3066–3069. (2012)

  31. Hong, S., Kwak, S., Han, B.: Orderless tracking through model-averaged posterior estimation. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2296–2303. (2013)

  32. Chen, Z., Jin, H., Lin, Z., Cohen, S., Wu, Y.: Large displacement optical flow from nearest neighbor fields, In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2443–2450. (2013)

  33. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality, In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 604–613. (1998)

  34. Hua, Y., Alahari, K., Schmid,C.: Online object tracking with proposal selection. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 3092–3100. (2015)

  35. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2189–2202 (2012)

    Article  Google Scholar 

  36. Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: BING: binarized normed gradients for objectness estimation at 300fps, In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3286–3293. (2014)

  37. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges, In: Proceedings European Conference Computer Vision (ECCV), pp. 391–405. (2014)

  38. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1532–4435 (2008)

    MATH  Google Scholar 

  39. Hare, S., Saffari , A., Torr, P.H.S.: Efficient online structured output learning for keypoint-based object tracking, In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1894–1901. (2012)

  40. Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.H.: Fast visual tracking via dense spatio-temporal context learning. In: Proceedings of the 13th European Conference on Computer Vision—Volume Part V, pp. 127–141. (2014)

  41. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1269–1276. (2010)

  42. Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: 2011 International Conference on Computer Vision, pp. 1195–1202. (2011)

  43. Wang, D., H., Lu, Yang, M.H.: Least soft-threshold squares tracking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2371–2378. (2013)

  44. Zhang, K., Zhang, L., Yang, M.H.: Real-time compressive tracking. In: Proceedings of the 12th European Conference on Computer Vision—Volume Part III, pp. 864–877. (2012)

Download references

Acknowledgements

This work was supported by Chinese Government Scholarship under China Scholarship Council (CSC), National Natural Science Foundation of China (Grant No. 61175096, NSFC No. 61300082), Liaoning Natural Science Foundation (No. 2015020015) and 2016 project funded by China Postdoctoral Science Foundation (No. 2016M601306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy T. Mbelwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbelwa, J.T., Zhao, Q., Lu, Y. et al. Objectness-based smoothing stochastic sampling and coherence approximate nearest neighbor for visual tracking. Vis Comput 35, 371–384 (2019). https://doi.org/10.1007/s00371-018-1470-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1470-5

Keywords

Navigation