Abstract
Existing saliency detection algorithms are mainly patch-based. In this paper, we propose a simple but effective approach to detect salient objects by exploring both patch-level and object-level cues. First, we obtain the objectness saliency map with objectness algorithm to find potential object candidates without need of category information. Second, the compactness map is generated by measuring color spatial distribution, and then it is refined by eliminating regions connecting to the selected boundary. Finally, to enforce the consistency among salient regions, we adopt graph-based manifold ranking algorithm by constructing two graphs each using a regional property descriptor. Both qualitative and quantitative evaluations on four publicly available datasets demonstrate the robustness and efficiency of our proposed approach against 23 state-of-the-art methods in terms of six performance criterions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Guo, C., Zhang, L.: A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE TIP 19(1), 185–198 (2010)
Wang, P., Wang, J., Zeng, G., Feng, J., Zha, H., Li, S.: Salient object detection for searched web images via global saliency. In: CVPR, pp. 3194–3201 (2012)
Cheng, M., Mitra, N.J., Huang, X., Hu, S.: Salientshape: group saliency in image collections. Vis. Comput. 30(4), 443–453 (2014)
Sun, J., Ling, H.: Scale and object aware image thumbnailing. IJCV 104(2), 135–153 (2013)
Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. In: CVPR, pp. 2376–2383 (2010)
Margolin, R., Zelnik-Manor, L., Tal, A.: Saliency for image manipulation. TVC 29(5), 381–392 (2013)
Li, J., Levine, M.D., An, X., Xu, X., He, H.: Visual saliency based on scale space analysis in the frequency domain. IEEE TPAMI 35(4), 996–1010 (2013)
Borji, A., Cheng, M.-M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE TIP 24(12), 414–429 (2015)
Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: CVPR, pp. 1–8 (2007)
Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. JOV 9(12), 1–27 (2009)
Borji, A., Cheng, M.-M., Jiang, H., Li, J.: Salient object detection: a survey. Eprint Arxiv 16(7), 3118 (2014)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI 20(11), 1254–1259 (1998)
Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS, pp. 545–552 (2006)
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.: Learning to detect a salient object. IEEE TPAMI 33(2), 353–367 (2011)
Achanta, R., Estrada, F., Wils, P., Susstrunk, S.: Salient region detection and segmentation. In: ICVS, pp. 66–75 (2008)
Rahtu, E., Kannala, J., Salo, M., Heikkila, J.: Segmenting salient objects from images and videos. In ECCV, pp. 366–379 (2010)
Achanta, R., Susstrunk, S.: Saliency detection using maximum symmetric surround. In: ICIP, pp. 2653–2656 (2010)
Yang, C., Zhang, L., Lu, H.: Graph-regularized saliency detection with convex-hull-based center prior. IEEE SPL 20(7), 637–640 (2013)
Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct. In: CVPR, pp. 2083–2090 (2013)
Klein, D.A., Frintrop, S.: Center-surround divergence of feature statistics for salient object detection. In: ICCV, pp. 2214–2219 (2011)
Achanta, R., Hemami, S.S., Estrada, F.J., Susstrunk, S.: Frequency-tuned salient object detection. In: CVPR, pp. 1597–1604 (2009)
Cheng, M.-M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.: Global contrast based salient region detection. IEEE TPAMI 37(3), 569–582 (2015)
Cheng, M.-M., Warrell, J., Lin, W.-Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: ICCV, pp. 1529–1536 (2013)
Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filers: contrast based filtering for salient region detection. In: CVPR, pp. 733–740 (2012)
Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng N.: Automatic salient object segmentation based on context and shape prior. In: BMVC (2011)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR, pp. 1155–1162 (2013)
Qi, W., Cheng, M., Borji, A., Lu, H., Bai, L.: Saliencyrank: two-stage manifold ranking for salient object detection. Comput. Vis. Media 1(4), 309–320 (2016)
Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: a discriminant regional feature integration approach. In: CVPR, pp. 2083–2090 (2013)
Xie, Y., Lu, H., Yang, M.: Bayesian saliency via low and mid level cues. IEEE TIP 22(5), 1689–1698 (2013)
Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.H.: Saliency detection via dense and sparse reconstruction. In: ICCV, pp. 1665–1672 (2013)
Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing markov chain. In: ICCV, pp. 2976–2983 (2013)
Li, C., Yuan, Y., Cai, W., Xia, Y., Feng, D.D.: Robust saliency detection via regularized random walks ranking. In: IEEE CVPR, pp. 2710–2717 (2015)
Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: ECCV, pp. 29–42 (2012)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: CVPR, pp. 3166–3173 (2013)
Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: CVPR, pp. 2814–2821 (2014)
Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by ufo: Uniqueness, focusness and objectness. In: ICCV, pp. 1976–1983 (2013)
Li, N., Ye, J., Ji, Y., Ling, H., Yu, J.: Saliency detection on light field. In: CVPR, pp. 2806–2813 (2014)
Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE TPAMI 34(11), 2189–2202 (2012)
Chang, K., Liu, T., Chen, H., Lai, S.: Fusing generic objectness and visual saliency for salient object detection. IEEE ICCV, pp. 914–921 (2011)
Jia, Y., Han, M.: Category-independent object-level saliency detection. In: ICCV, pp. 1761–1768 (2013)
Vikram, T.N., Tscherepanow, M., Wrede, B.: A saliency map based on sampling an image into random rectangular regions of interest. Pattern Recognit. 45(9), 3114–3124 (2012)
Li, H., Lu, H., Lin, Z., Shen, X., Price, B.: Inner and inter label propagation salient object detection in the wild. IEEE TIP 24(10), 3176–3186 (2015)
Shen, X., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: CVPR, pp. 853–860 (2012)
Tong, N., Lu, H., Ruan, X., Yang, M.-H.: Salient object detection via bootstrap learning. In: IEEE CVPR, pp. 1884–1892 (2015)
Achanta, R., Shaji, A., Smith, S., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE TPAMI 34(11), 2274–2282 (2012)
Zhou, D., Weston, J., Gretton, A., Bousquet, O., Scholkopf B.: Ranking on data manifolds. In: NIPS (2004)
Wang, J., Lu, H., Li, X., Tong, N., Liu, W.: Saliency detection via background and foreground seed selection. Neurocomputing 152(25), 359–368 (2015)
Rosenfeld, A., Weinshall, D.: Extracting foreground masks towards object recognition. In: ICCV, pp. 1371–1378 (2011)
Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps. In: CVPR, pp. 248–255 (2014)
Maksai, A., Wang, X., Fua, P.: What players do with the ball: a physically constrained interaction modeling. In: CVPR, pp. 972–981 (2016)
Wang, X., Turetken, E., Fleuret, F., Fua, P.: Tracking interacting objects using intertwined flows. IEEE TPAMI 38(11), 2312–2326 (2016)
Acknowledgements
This work is supported by the National Natural Science Foundation of China under Grant Nos. 61401281 and No.41671402 and Science Foundation of Shanghai under Grant No. 14ZR1440700.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, Q., Lin, J., Li, W. et al. Salient object detection via compactness and objectness cues. Vis Comput 34, 473–489 (2018). https://doi.org/10.1007/s00371-017-1354-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-017-1354-0