Abstract
Human emotions are often expressed by facial expressions and are generated by facial muscle movements. In recent years, the analysis of facial expressions has emerged as an active research area due to its various applications such as human–computer interaction, human behavior understanding, biometrics, emotion recognition, computer graphics, driver fatigue detection, and psychology. A novel analysis of dynamic 3D facial expressions using the positional information of automatically detected facial landmarks and the wavelet transformation is presented, which results in the proposed spatio-temporal descriptor. This descriptor is employed within the current paper in a retrieval scheme for dynamic 3D facial expression datasets and is thoroughly evaluated. Experiments have been conducted using the six prototypical expressions of the publicly available BU-4DFE dataset as well as the eight expressions included in the newly released publicly available BP4D-Spontaneous dataset. The obtained retrieval results outperform the retrieval results of the state-of-the-art methodologies. Furthermore, the retrieval results are exploited to achieve unsupervised dynamic 3D facial expression recognition. The aforementioned unsupervised procedure achieves better recognition accuracy compared to supervised dynamic 3D facial expression recognition state-of-the-art techniques.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Berretti, S., Del Bimbo, A., Pala, P.: Automatic facial expression recognition in real-time from dynamic sequences of 3D face scans. Vis. Comput. 29(12), 1333–1350 (2013)
Bovik, A.C.: Handbook of Image and Video Processing (Communications, Networking and Multimedia). Academic Press, Orlando (2005)
Canavan, S.J., Sun, Y., Zhang, X., Yin, L.: A dynamic curvature based approach for facial activity analysis in 3D space. In: CVPR Workshops, pp. 14–19 (2012)
Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: Computer Vision and Pattern Recognition (CVPR), pp. 3642–3649 (2012)
Danelakis, A., Theoharis, T., Pratikakis, I.: Geotopo: Dynamic 3D facial expression retrieval using topological and geometric information. In: Proc. 3D Object Retrieval 2014 Workshop, pp. 1–8 (2014)
Danelakis, A., Theoharis, T., Pratikakis, I.: A robust spatio-temporal scheme for dynamic 3D facial expression retrieval. Vis. Comput. 32(2), 257–269 (2015). doi:10.1007/s00371-015-1142-7
Danelakis, A., Theoharis, T., Pratikakis, I.: A spatio-temporal descriptor for dynamic 3D facial expression retrieval and recognition. In: Proc. 3D Object Retrieval 2015 Workshop, pp. 63–70 (2015)
Danelakis, A., Theoharis, T., Pratikakis, I.: A survey on facial expression recognition in 3D video sequences. Multimedia Tools Appl. 74(15), 5577–5615 (2015)
Danelakis, A., Theoharis, T., Pratikakis, I., Perakis, P.: An effective methodology for dynamic 3D facial expression retrieval. Pattern Recognit. 52, 174–185 (2016). doi:10.1016/j.patcog.2015.10.012
Dapogny, A., Bailly, K., Dubuisson, S.: Dynamic facial expression recognition by joint static and multi-time gap transition classification. In: International Conference on Automatic Face and Gesture Recognition, Ljubljana, pp. 1–6 (2015)
Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992)
Drira, H., Ben Amor, B., Daoudi, M., Srivastava, A., Berretti, S.: 3D dynamic expression recognition based on a novel deformation vector field and random forest. In: ICPR ’12, pp. 1104–1107 (2012)
Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)
Fang, T., Zhao, X., Ocegueda, O., Shah, S.K., Kakadiaris, I.A.: 3D/4D facial expression analysis: an advanced annotated face model approach. Image Vis. Comput. 30(10), 738–749 (2012)
Fang, T., Zhao, X., Shah, S.K., Kakadiaris, I.A.: 4D facial expression recognition. In: ICCV ’11, pp. 1594–1601 (2011)
Jeni, L.A., Lórincz, A., Nagy, T., Palotai, Z., Sebók, J., Szabó, Z., Takács, D.: 3D shape estimation in video sequences provides high precision evaluation of facial expressions. Image Vis. Comput. 30(10), 785–795 (2012)
Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. The Sparse Way, 3rd edn. Academic Press, New York (2008)
Navarro, R., Tabernero, A.: Gaussian wavelet transform: two alternative fast implementations for images. Multidimens. Syst. Signal Process. 2(4), 421–436 (1991)
Perakis, P., Passalis, G., Theoharis, T., Kakadiaris, I.A.: 3D facial landmark detection under large yaw and expression variations. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1552–1564 (2013)
Perakis, P., Theoharis, T., Kakadiaris, I.A.: Feature fusion for facial landmark detection. Pattern Recognit. 47(9), 2783–2793 (2014)
Quiroga, R.Q., Sakowitz, O.W., Basar, E., Schürmann, M.: Wavelet transform in the analysis of the frequency composition of evoked potentials. Brain Res. Protoc. 8(1), 16–24 (2001)
Sandbach, G., Zafeiriou, S., Pantic, M., Rueckert, D.: Recognition of 3D facial expression dynamics. Elsevier Image Vis. Comput. 30(10), 762–773 (2012)
Sandbach, G., Zafeiriou, S., Pantic, M., Yin, L.: Static and dynamic 3D facial expression recognition: a comprehensive survey. Image Vis. Comput. 30(10), 683–697 (2012)
Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Shape Modeling International, pp. 167–178 (2004)
Sun, Y., Chen, X., Rosato, M.J., Yin, L.: Tracking vertex flow and model adaptation for three-dimensional spatiotemporal face analysis. IEEE Trans. Syst. Man Cybern. A 40(3), 461–474 (2010)
Sun, Y., Reale, M., Yin, L.: Recognizing partial facial action units based on 3D dynamic range data for facial expression recognition. In: FG ’08, pp. 1–8 (2008)
Sun, Y., Yin, L.: Facial expression recognition based on 3D dynamic range model sequences. In: Springer Proc. ECCV ’08: Part II, pp. 58–71 (2008)
Tsalakanidou, F., Malassiotis, S.: Robust facial action recognition from real-time 3D streams. In: CVPR ’09, pp. 4–11 (2009)
Tsalakanidou, F., Malassiotis, S.: Real-time 2D+3D facial action and expression recognition. Elsevier Pattern Recognit. 43(5), 1763–1775 (2010)
Yin, L., Chen, X., Sun, Y., Worm, T., Reale, M.: A high-resolution 3D dynamic facial expression database. In: IEEE Proc. FG ’08, pp. 1–6 (2008)
Yin, L., Wei, X., Longo, P., Bhuvanesh, A.: Analyzing facial expressions using intensity-variant 3D data for human computer interaction. In: Proc. ICPR ’06, pp. 1248–1251 (2006)
Zhang, X., Reale, M., Yin, L.: Nebula feature: a space-time feature for posed and spontaneous 4D facial behavior analysis. In: IEEE FG ’13 (2013)
Zhang, X., Yin, L., Cohn, J.F., Canavan, S., Reale, M., Horowitz, A., Liu, P., Girard, J.: A high-resolution spontaneous 3D dynamic facial expression database. In: IEEE FG ’13 (2013)
Zhang, X., Yin, L., Cohn, J.F., Canavan, S., Reale, M., Horowitz, A., Liu, P., Girard, J.: BP4D Spontaneous: a high-resolution spontaneous 3D dynamic facial expression database. Image Vis. Comput. 32(10), 692–706 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Danelakis, A., Theoharis, T. & Pratikakis, I. A spatio-temporal wavelet-based descriptor for dynamic 3D facial expression retrieval and recognition. Vis Comput 32, 1001–1011 (2016). https://doi.org/10.1007/s00371-016-1243-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-016-1243-y