Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Retiling scheme: a novel approach of direct anisotropic quad-dominant remeshing

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Remeshing has been an active research topic in Digital Geometry Processing. In this paper, a novel approach of direct anisotropic quad-dominant remeshing is proposed. We apply the retiling method to the particular problem of quad-dominant remeshing. Compared with other methods, this method can simply partition the surface of an original triangular mesh into connected quads with the mesh edges aligning to the principal directions. The first step in this method is to estimate and smooth the curvature tensor field of the surface at the vertices, and then the quad-dominant mesh is obtained by retiling the quad surface so that quadrilateral edges are parallel to the local principal curvature directions. In addition, to preserve the sharp feature information during remeshing processes, the feature lines can be extracted using mesh segmentation method, and the intersections between the feature lines and the orthogonal planes can be found during the process of retiling. A feature fusion process is presented to join the feature edges and feature points into the quad-dominant mesh. The experiment results show that this new remeshing method is simple and easy to implement. The resolution of the quadrilateral mesh can be controlled during the remeshing. It is applicable to arbitrary genus meshes and can generate high-quality quad-dominant mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lai, Y.K., Kobbelt, L., Hu, S.M.: An incremental approach to feature aligned quad dominant remeshing. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, pp. 137–145 (2008)

  2. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004)

    Article  Google Scholar 

  3. Botsch, M., Kobbelt, L.: Resampling feature and blend regions in polygonal meshes for surface anti-aliasing. Comput. Graph. Forum 20(3), 402–410 (2001)

    Article  Google Scholar 

  4. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., Bao, H.: Spectral quadrangulation with orientation and alignment control. ACM Trans. Graph. 27(5), 147:1–147:9 (2008)

    Article  Google Scholar 

  5. Bommes, D., Zimmer, H., Kobbelt, L.: Mixed-integer quadrangulation. TOG 09, 137–145 (2009)

  6. Campen, Marcel, Bommes, David, Kobbelt, Leif: Dual loops meshing: quality quad layouts on manifolds. ACM Trans. Graph. 31(4), 1–11 (2012)

    Article  Google Scholar 

  7. Attene, M., Falcidieno, B., Spagnuolo, M., Rossignac, J.: Swingwrapper: retiling triangle meshes for better edgebreaker compression. ACM Trans. Graph. 22(4), 982–996 (2003)

    Article  Google Scholar 

  8. Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent advances in remeshing of surfaces. In: De Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structuring, Mathematics and Visualization, Springer (2008)

  9. Lee, A.W. F., Sweldens, W., Schröder, P., Cowsar, L., Dobkin, D.: Maps: multiresolution adaptive parameterization of surfaces. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 98, ACM, pp. 95–104 (1998)

  10. Kobbelt, L.P., Vorsatz, J., Labsik, U.A.: A shrink wrapping approach to remeshing polygonal surfaces. Comput. Graph. Forum 18(3), 119–130 (1999)

  11. Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. ACM Trans. Graph. 21(3), 355–361 (2002)

    Article  Google Scholar 

  12. Surazhsky, V., Gotsman, C.: Explicit surface remeshing. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP 03, Eurographics Association, pp. 20–30 (2003)

  13. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3d models. ACM Trans. Graph. 23(3), 861–869 (2004)

    Article  Google Scholar 

  14. Alexa, M.: Merging polyhedral shapes with scattered features. Vis. Comput. 16, 26–37 (2000)

    Article  MATH  Google Scholar 

  15. Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.P.: Feature sensitive surface extraction from volume data. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 01, ACM, pp. 57–66 (2001)

  16. Alliez, P., Verdire, E.C.D., Devillers, O., Isenburg, M.: Isotropic surface remeshing. In: Proceedings of the Shape Modeling International 2003, SMI 03, IEEE Computer Society, pp. 49–58 (2003)

  17. Alliez, P., Meyer, M., Desbrun, M.: Interactive geometry remeshing. ACM Trans. Graph. 21(3), 347–354 (2002)

    Article  Google Scholar 

  18. Hormann, K., Geriner, G.: Quadrilateral remeshing. In: Proceedings of Vision, Modeling, and Visualization, pp. 153–162 (2000)

  19. Dong, S., Bremer, P.T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangulation. In: ACM SIGGRAPH 2006 Papers (New York, NY, USA, 2006), SIGGRAPH 06, pp.1057–1066 (2006)

  20. Chiang, Chienhsing, Jong, Binshyan, Lin, Tsongwuu: A robust feature-preserving semi-regular remeshing method for triangular meshes. Vis. Comput. 27, 811–825 (2011)

    Article  Google Scholar 

  21. Ray, N., Li, W.C., Lvy, B., Sheffer, A., Alliez, P.: Periodic global parameterization. ACM Trans. Graph. 25(4), 1460–1485 (2006)

    Article  Google Scholar 

  22. Dong, S., Kircher, S., Garland, M.: Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Comput. Aided Geom. Des. 22(5), 392–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP 06, Eurographics Association, pp. 201–210 (2006)

  24. Kälberer, F., Nieser, M., Polthier, K.: Quadcover—surface parameterization using branched coverings. Comput. Graph. Forum 26(3), 375–384 (2007)

    Article  MATH  Google Scholar 

  25. Bommes, D., Zimmer, H., Kobbelt, L.: Mixed-integer quadrangulation. ACM Trans. Graph. 28(3), 77:1–77:10 (2009)

    Article  Google Scholar 

  26. Alliez, P., Cohen-Steiner, D., Devillers, O., Lvy, B., Desbrun, M.: Anisotropic polygonal remeshing, SIGGRAPH 03, ACM, pp. 485–493 (2003)

  27. Marinov, M., Kobbelt, L.: Direct anisotropic quaddominant remeshing, PG 04. IEEE Computer Society, pp. 207–216 (2004)

  28. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Computer Vision, pp. 902–907 (1995)

  29. Cohen-Steiner, D., Morvan, J.M.: Restricted delaunay triangulations and normal cycle, SCG 03, ACM, pp. 312–321 (2003)

  30. Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. SIGGRAPH 00, 517–526 (2000)

    Google Scholar 

  31. Yang, Fei, Zhou, Fan, Wang, Ruomei, Liu, Li: A fast and efficient mesh segmentation method based on improved region growing. Appl. Math. J. Chin. Univ. 29(4), 468–480 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lavou, G., Dupont, F., Baskurt, A.: A new cad mesh segmentation method, based on curvature tensor analysis. Comput. Aided Des. 37(10), 975–987 (2005)

    Article  Google Scholar 

  33. Botsch, M., Stelinberg, S., Bischoff, S., Kobbelt, L.: Openmesh—a generic and efficient polygon mesh data structure. OpenSG Symposium (2002)

Download references

Acknowledgments

We would like to thank the reviewers for their valuable comments. This work is supported by the National Natural Science Foundation of China (Nos. 61272192, 61379112, 61432003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruomei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Zhou, F. & Yang, F. Retiling scheme: a novel approach of direct anisotropic quad-dominant remeshing. Vis Comput 32, 1179–1189 (2016). https://doi.org/10.1007/s00371-016-1210-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1210-7

Keywords

Navigation