Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Image morphing with conformal welding

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We address the issue of deforming an image of a source object to that of a target. Previous works including barycentric coordinates and functional maps can hardly enforce shape consistency, especially for the objects with complex nested shape components. We leverage the conformal welding theory that maps 2D shapes (planar contours) to the automorphisms of the unit circle, named shape signatures. Conformal welding enables us to apply the Laplacian constraint to deformations in the signature space (or unit circle domain), which renders efficiency and flexibility. Additionally, we are able to fully reconstruct complex shape contours from deformed signatures, and hence generate the morphed images for target shapes. The experiments on complex shape contours and facial images, where multiple components exist, validate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. See [26] for a brief review on the techniques before 2000.

References

  1. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: SIGGRAPH ’00, pp. 157–164 (2000)

  2. Arad, N., Dyn, N., Reisfeld, D., Yeshurun, Y.: Image warping by radial basis functions: application to facial expressions. In: CVGIP: Graphical Models and Image Processing, pp. 161–172 (1994)

  3. Beier, T., Neely, S.: Feature-based image metamorphosis. In: SIGGRAPH ’92, pp. 35–42 (1992)

  4. Bonneel, N., van de Panne, M., Paris, S., Heidrich, W.: Displacement interpolation using lagrangian mass transport. ACM Trans. Graph. 30(6), 158:1–158:12 (2011)

    Article  Google Scholar 

  5. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1:1–1:20 (2011)

    Article  Google Scholar 

  6. Chen, T.L., Geman, S.: Image warping using radial basis functions. J. Appl. Stat. 41(2), 242–258 (2014)

    Article  MathSciNet  Google Scholar 

  7. Dykstra, C., Celler, A., Greer, K., Jaszczak, R.: The use of image morphing to improve the detection of tumors in emission imaging. IEEE Trans. Nucl. Sci. 46(3), 673–679 (1999)

    Article  Google Scholar 

  8. Fan, X., Chai, Z., Feng, Y., Wang, Y., Wang, S., Luo, Z.: An efficient mesh-based face beautifier on mobile devices. Neurocomputing (2015)

  9. Fan, X., Wang, H., Luo, Z., Li, Y., Hu, W., Luo, D.: Fiducial facial point extraction using a novel projective invariant. IEEE Trans. Image Process. 24(3), 1164–1177 (2015)

    Article  MathSciNet  Google Scholar 

  10. Gao, L., Lai, Y.K., Huang, Q.X., Hu, S.M.: A data-driven approach to realistic shape morphing. Computer Graph. Forum 32(2pt4), 449–457 (2013)

    Article  Google Scholar 

  11. Gu, X.D., Yau, S.T.: Computational Conformal Geometry. Higher Education Press, Beijing (2008)

    MATH  Google Scholar 

  12. Hormann, K., Floater, M.S.: Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25(4), 1424–1441 (2006)

    Article  Google Scholar 

  13. Hormann, K., Floater, M.S.: Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25(4), 1424–1441 (2006)

    Article  Google Scholar 

  14. Hu, W., Luo, Z., Fan, X.: Image retargeting via adaptive scaling with geometry preservation. IEEE J. Emerg. Selected Topics Circuits Syst. 4(1), 70–81 (2014)

    Article  Google Scholar 

  15. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3) (2007)

  16. Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. In: SIGGRAPH ’05, pp. 561–566 (2005)

  17. Kabul, I., Pizer, S.M., Rosenman, J., Niethammer, M.: An optimal control approach for texture metamorphosis. Computer Graph. Forum 30(8), 2341–2353 (2011)

    Article  Google Scholar 

  18. Liu, L., Wang, G., Zhang, B., Guo, B., Shum, H.Y.: Perceptually based approach for planar shape morphing. In: PG 2004, pp. 111–120 (2004)

  19. Lui, L., Zeng, W., Yau, S., Gu, X.: Shape analysis of planar multiply-connected objects using conformal welding. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1384–1401 (2013)

  20. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: GRAPHITE ’06, pp. 381–389 (2006)

  21. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31(4), 30:1–30:11 (2012)

    Article  Google Scholar 

  22. Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 fps via regressing local binary features. In: Proceedings of CVPR (2014)

  23. Sharon, E., Mumford, D.B.: 2D-shape analysis using conformal mapping. Int. J. Computer Vision 70(1), 55–75 (2006)

    Article  Google Scholar 

  24. Shi, R., Zhu, H., Gu, D., Liang, J.: Efficient colon wall flattening by improved conformal mapping methodologies for computed tomography colonography. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE, pp. 3137–3143 (2011)

  25. Szeptycki, P., Ardabilian, M., Chen, L., Zeng, W., Gu, D., Samaras, D.: Partial face biometry using shape decomposition on 2d conformal maps of faces. In: Proceedings of ICPR, pp. 1505–1508 (2010)

  26. Tal, A., Elber, G.: Image morphing with feature preserving texture. Computer Graph. Forum 18, 339–348 (1999)

    Article  Google Scholar 

  27. Whitaker, R.: A level-set approach to image blending. IEEE Trans. Image Process. 9(11), 1849–1861 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, E., Liu, F.: Robust image metamorphosis immune from ghost and blur. The Visual Computer 29(4), 311–321 (2013)

    Article  Google Scholar 

  29. Xiao, X., Huang, H., Ma, L.: Rbf network-based temporal color morphing. Computer Anim. Virtual Worlds 21(3–4), 289–296 (2010)

    Google Scholar 

  30. Yang, F., Shechtman, E., Wang, J., Bourdev, L., Metaxas, D.: Face morphing using 3D-aware appearance optimization. In: Proceedings of Graphics Interface 2012, GI ’12, pp. 93–99, Toronto, Canada (2012)

  31. Yang, W., Feng, J.: 2d shape morphing via automatic feature matching and hierarchical interpolation. Computers Graph. 33(3), 414–423 (2009)

    Article  Google Scholar 

  32. Yang, W., Wang, X., Wang, G.: Part-to-part morphing for planar curves. Visual Computer 30(6–8), 919–928 (2014)

    Article  Google Scholar 

  33. Yap, P.T., Wu, G., Zhu, H., Lin, W., Shen, D.: Timer: tensor image morphing for elastic registration. NeuroImage 47(2), 549–563 (2009)

    Article  Google Scholar 

  34. Zeng, W., Gu, D.: Conformal geometric methods in computer vision. In: The 8th International Conference Expo on Emerging Technologies for a Smarter World (CEWIT), pp. 1–6 (2011)

  35. Zeng, W., Li, H., Chen, L., Morvan, J.M., Gu, X.: An automatic 3D expression recognition framework based on sparse representation of conformal images. In: Proceedings of FG, pp. 1–8 (2013)

  36. Zeng, W., Yin, X., Zhang, M., Luo, F., Gu, X.: Generalized koebe’s method for conformal mapping multiply connected domains. In: SPM ’09, pp. 89–100 (2009)

  37. Zhang, C., Cohen, F.: 3-d face structure extraction and recognition from images using 3-d morphing and distance mapping. IEEE Trans. Image Process. 11(11), 1249–1259 (2002)

    Article  MathSciNet  Google Scholar 

  38. Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-encoder networks (cfan) for real-time face alignment. In: Proceedings of ECCV (2014)

  39. Zhu, L., Yang, Y., Haker, S., Tannenbaum, A.: An image morphing technique based on optimal mass preserving mapping. IEEE Trans. Image Process. 16(6), 1481–1495 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Natural Science Foundation of China (NSFC) under Grant Nos. 61272371 and 61328206, and also by the Civil Aviation Administration of China and NSFC jointly funded project (U1233110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Feng, Y., Chai, Z. et al. Image morphing with conformal welding. Vis Comput 32, 1191–1203 (2016). https://doi.org/10.1007/s00371-015-1188-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1188-6

Keywords

Navigation