Abstract
In this paper, we present a shift-invariant ring feature for 3D shape, which can encode multiple low-level descriptors and provide high-discriminative representation of local region for 3D shape. First, several iso-geodesic rings are created at equal intervals, and then low-level descriptors on the sampling rings are used to represent the property of a feature point. In order to boost the descriptive capability of raw descriptors, we formulate the unsupervised basis learning into an L1-penalized optimization problem, which uses convolution operation to address the rotation ambiguity of descriptors resulting from different starting points in rings. In the following extraction procedure of high-level feature, we use the learned bases to calculate the sparse coefficients by solving the optimization problem. Furthermore, to make the coefficients irrelevant with the sequential order in ring, we use Fourier transform to achieve circular-shift invariant ring feature. Experiments on 3D shape correspondence and retrieval demonstrate the satisfactory performance of the proposed intrinsic feature.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agathos, A., Pratikakis, I., Papadakis, P., Perantonis, S., Azariadis, P., Sapidis, N.S.: 3d articulated object retrieval using a graph-based representation. Vis. Comput. 26(10), 1301–1319 (2010)
Ben-Chen, M., Gotsman, C.: Characterizing shape using conformal factors. In: Eurographics Workshop on 3D Object Retrieval, pp. 1–8 (2008)
Bimbo, A.D., Pala, P.: Content-based retrieval of 3d models. ACM Trans. Multimed. Comput. Commun. Appl. (TOMCCAP) 2(1), 20–43 (2006)
Bronstein, A.M., Bronstein, M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, New York (2008)
Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. (TOG) 30(1), 1 (2011)
Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1704–1711. IEEE (2010)
Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Computer Graphics Forum, vol. 27, pp. 643–652. Wiley, New York (2008)
Darom, T., Keller, Y.: Scale-invariant features for 3-d mesh models. IEEE Trans. Image Process. 21(5), 2758–2769 (2012)
Dubrovina, A., Kimmel, R.: Matching shapes by eigendecomposition of the Laplace–Beltrami operator. In: Proceedings of Symposium on 3D Data Processing, vol. 2 (2010)
Grosse, R., Raina, R., Kwong, H., Ng, A.Y.: Shift-invariance sparse coding for audio classification. arXiv:1206.5241 (2012)
Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 203–212. ACM (2001)
Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. comput. 25(5–7), 667–675 (2009)
Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3d models. Comput.-Aided Des. 39(5), 398–407 (2007)
Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)
Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3d shape descriptors. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 156–164. Eurographics Association (2003)
Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. In: ACM Transactions on Graphics (TOG), vol. 30, p. 79. ACM (2011)
Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. 95(15), 8431–8435 (1998)
Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3d SURF for robust three dimensional classification. In: Computer Vision-ECCV 2010, pp. 589–602. Springer, New York (2010)
Kokkinos, I., Bronstein, M.M., Litman, R., Bronstein, A.M.: Intrinsic shape context descriptors for deformable shapes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 159–166. IEEE (2012)
Laga, H., Schreck, T., Ferreira, A., Godil, A., Pratikakis, I.: Bag of words and local spectral descriptor for 3D partial shape retrieval. In: Eurographics Workshop on 3D Object Retrieval (2011)
Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. Adv. Neural Inf. Process. Syst. 19, 801 (2007)
Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: Tenth IEEE International Conference on Computer Vision, vol. 2, pp. 1482–1489. IEEE (2005)
Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Van Nguyen, H., Ohbuchi, R., et al.: A comparison of methods for non-rigid 3d shape retrieval. Pattern Recognit. 46(1), 449–461 (2012)
Liu, Z., Bu, S., Zhou, K., Gao, S., Han, J., Wu, J.: A survey on partial retrieval of 3d shapes. J. Comput. Sci. Technol. 28(5), 836–851 (2013)
López-Sastre, R.J., García-Fuertes, A., Redondo-Cabrera, C., Acevedo-Rodríguez, F., Maldonado-Bascón, S.: Evaluating 3d spatial pyramids for classifying 3d shapes. Comput. Graph. 37(5), 473–483 (2013)
Mykhalchuk, V., Cordier, F., Seo, H.: Landmark transfer with minimal graph. Comput. Graph. 37(5), 539–552 (2013)
Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis. Res. 37(23), 3311–3325 (1997)
Peyré, G., Cohen, L.D.: Geodesic remeshing using front propagation. Int. J. Comput. Vis. 69(1), 145–156 (2006)
Sfikas, K., Theoharis, T., Pratikakis, I.: Non-rigid 3d object retrieval using topological information guided by conformal factors. Vis. Comput. 28(9), 943–955 (2012)
Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual part analogies in 3d objects. Int. J. Comput. Vis. 89(2–3), 309–326 (2010)
Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24(4), 249–259 (2008)
Shen, Y.T., Chen, D.Y., Tian, X.P., Ouhyoung, M.: 3D model search engine based on lightfield descriptors. EUROGRAPHICS Interactive Demos, Granada, pp. 1–6 (2003)
Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of the Shape Modeling Applications, pp. 167–178. IEEE (2004)
Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3-d models using medial surfaces. Mach. Vis. Appl. 19(4), 261–275 (2008)
Sipiran, I., Bustos, B., Schreck, T.: Data-aware 3d partitioning for generic shape retrieval. Comput. Graph. 37(5), 460–472 (2013)
Smith, E., Lewicki, M.S.: Efficient coding of time-relative structure using spikes. Neural Comput. 17(1), 19–45 (2005)
Kovnatsky, A., Bronstein, M., Bronstein, A., Raviv, D., Kimmel, R.: Affine–invariant photometric heat kernel signatures. In: Eurographics Workshop on 3D Object Retrieval, pp. 1–8 (2012)
Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392. Wiley, New York (2009)
Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3d shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008)
Tevs, A., Berner, A., Wand, M., Ihrke, I., Seidel, H.P.: Intrinsic shape matching by planned landmark sampling. In: Computer Graphics Forum, vol. 30, pp. 543–552. Wiley, New York (2011)
Wu, H.Y., Zha, H., Luo, T., Wang, X.L., Ma, S.: Global and local isometry-invariant descriptor for 3d shape comparison and partial matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 438–445. IEEE (2010)
Acknowledgments
This work was supported partly by grants from National Natural Science Foundation of China (61202185, 61003137, 41201390), Northwestern Polytechnical University Basic Research Fund (JC201202, JC201220), the Fundamental Research Funds for the Central Universities, Shaanxi Natural Science Fund (2012JQ8037), and Open Project Program of the State Key Lab of CAD&CG (A1306), Zhejiang University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bu, S., Han, P., Liu, Z. et al. Shift-invariant ring feature for 3D shape. Vis Comput 30, 867–876 (2014). https://doi.org/10.1007/s00371-014-0970-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-014-0970-1