Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Shift-invariant ring feature for 3D shape

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present a shift-invariant ring feature for 3D shape, which can encode multiple low-level descriptors and provide high-discriminative representation of local region for 3D shape. First, several iso-geodesic rings are created at equal intervals, and then low-level descriptors on the sampling rings are used to represent the property of a feature point. In order to boost the descriptive capability of raw descriptors, we formulate the unsupervised basis learning into an L1-penalized optimization problem, which uses convolution operation to address the rotation ambiguity of descriptors resulting from different starting points in rings. In the following extraction procedure of high-level feature, we use the learned bases to calculate the sparse coefficients by solving the optimization problem. Furthermore, to make the coefficients irrelevant with the sequential order in ring, we use Fourier transform to achieve circular-shift invariant ring feature. Experiments on 3D shape correspondence and retrieval demonstrate the satisfactory performance of the proposed intrinsic feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Agathos, A., Pratikakis, I., Papadakis, P., Perantonis, S., Azariadis, P., Sapidis, N.S.: 3d articulated object retrieval using a graph-based representation. Vis. Comput. 26(10), 1301–1319 (2010)

    Article  Google Scholar 

  2. Ben-Chen, M., Gotsman, C.: Characterizing shape using conformal factors. In: Eurographics Workshop on 3D Object Retrieval, pp. 1–8 (2008)

  3. Bimbo, A.D., Pala, P.: Content-based retrieval of 3d models. ACM Trans. Multimed. Comput. Commun. Appl. (TOMCCAP) 2(1), 20–43 (2006)

  4. Bronstein, A.M., Bronstein, M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, New York (2008)

  5. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. (TOG) 30(1), 1 (2011)

    Google Scholar 

  6. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1704–1711. IEEE (2010)

  7. Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Computer Graphics Forum, vol. 27, pp. 643–652. Wiley, New York (2008)

  8. Darom, T., Keller, Y.: Scale-invariant features for 3-d mesh models. IEEE Trans. Image Process. 21(5), 2758–2769 (2012)

    Article  MathSciNet  Google Scholar 

  9. Dubrovina, A., Kimmel, R.: Matching shapes by eigendecomposition of the Laplace–Beltrami operator. In: Proceedings of Symposium on 3D Data Processing, vol. 2 (2010)

  10. Grosse, R., Raina, R., Kwong, H., Ng, A.Y.: Shift-invariance sparse coding for audio classification. arXiv:1206.5241 (2012)

  11. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 203–212. ACM (2001)

  12. Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. comput. 25(5–7), 667–675 (2009)

    Article  Google Scholar 

  13. Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3d models. Comput.-Aided Des. 39(5), 398–407 (2007)

    Article  Google Scholar 

  14. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  15. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3d shape descriptors. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 156–164. Eurographics Association (2003)

  16. Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. In: ACM Transactions on Graphics (TOG), vol. 30, p. 79. ACM (2011)

  17. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. 95(15), 8431–8435 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3d SURF for robust three dimensional classification. In: Computer Vision-ECCV 2010, pp. 589–602. Springer, New York (2010)

  19. Kokkinos, I., Bronstein, M.M., Litman, R., Bronstein, A.M.: Intrinsic shape context descriptors for deformable shapes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 159–166. IEEE (2012)

  20. Laga, H., Schreck, T., Ferreira, A., Godil, A., Pratikakis, I.: Bag of words and local spectral descriptor for 3D partial shape retrieval. In: Eurographics Workshop on 3D Object Retrieval (2011)

  21. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. Adv. Neural Inf. Process. Syst. 19, 801 (2007)

    Google Scholar 

  22. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: Tenth IEEE International Conference on Computer Vision, vol. 2, pp. 1482–1489. IEEE (2005)

  23. Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Van Nguyen, H., Ohbuchi, R., et al.: A comparison of methods for non-rigid 3d shape retrieval. Pattern Recognit. 46(1), 449–461 (2012)

    Article  Google Scholar 

  24. Liu, Z., Bu, S., Zhou, K., Gao, S., Han, J., Wu, J.: A survey on partial retrieval of 3d shapes. J. Comput. Sci. Technol. 28(5), 836–851 (2013)

    Article  Google Scholar 

  25. López-Sastre, R.J., García-Fuertes, A., Redondo-Cabrera, C., Acevedo-Rodríguez, F., Maldonado-Bascón, S.: Evaluating 3d spatial pyramids for classifying 3d shapes. Comput. Graph. 37(5), 473–483 (2013)

  26. Mykhalchuk, V., Cordier, F., Seo, H.: Landmark transfer with minimal graph. Comput. Graph. 37(5), 539–552 (2013)

    Google Scholar 

  27. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis. Res. 37(23), 3311–3325 (1997)

  28. Peyré, G., Cohen, L.D.: Geodesic remeshing using front propagation. Int. J. Comput. Vis. 69(1), 145–156 (2006)

    Article  Google Scholar 

  29. Sfikas, K., Theoharis, T., Pratikakis, I.: Non-rigid 3d object retrieval using topological information guided by conformal factors. Vis. Comput. 28(9), 943–955 (2012)

    Article  Google Scholar 

  30. Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual part analogies in 3d objects. Int. J. Comput. Vis. 89(2–3), 309–326 (2010)

    Article  Google Scholar 

  31. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24(4), 249–259 (2008)

    Google Scholar 

  32. Shen, Y.T., Chen, D.Y., Tian, X.P., Ouhyoung, M.: 3D model search engine based on lightfield descriptors. EUROGRAPHICS Interactive Demos, Granada, pp. 1–6 (2003)

  33. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of the Shape Modeling Applications, pp. 167–178. IEEE (2004)

  34. Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3-d models using medial surfaces. Mach. Vis. Appl. 19(4), 261–275 (2008)

    Article  Google Scholar 

  35. Sipiran, I., Bustos, B., Schreck, T.: Data-aware 3d partitioning for generic shape retrieval. Comput. Graph. 37(5), 460–472 (2013)

  36. Smith, E., Lewicki, M.S.: Efficient coding of time-relative structure using spikes. Neural Comput. 17(1), 19–45 (2005)

    MATH  Google Scholar 

  37. Kovnatsky, A., Bronstein, M., Bronstein, A., Raviv, D., Kimmel, R.: Affine–invariant photometric heat kernel signatures. In: Eurographics Workshop on 3D Object Retrieval, pp. 1–8 (2012)

  38. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392. Wiley, New York (2009)

  39. Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3d shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008)

    Article  Google Scholar 

  40. Tevs, A., Berner, A., Wand, M., Ihrke, I., Seidel, H.P.: Intrinsic shape matching by planned landmark sampling. In: Computer Graphics Forum, vol. 30, pp. 543–552. Wiley, New York (2011)

  41. Wu, H.Y., Zha, H., Luo, T., Wang, X.L., Ma, S.: Global and local isometry-invariant descriptor for 3d shape comparison and partial matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 438–445. IEEE (2010)

Download references

Acknowledgments

This work was supported partly by grants from National Natural Science Foundation of China (61202185, 61003137, 41201390), Northwestern Polytechnical University Basic Research Fund (JC201202, JC201220), the Fundamental Research Funds for the Central Universities, Shaanxi Natural Science Fund (2012JQ8037), and Open Project Program of the State Key Lab of CAD&CG (A1306), Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, S., Han, P., Liu, Z. et al. Shift-invariant ring feature for 3D shape. Vis Comput 30, 867–876 (2014). https://doi.org/10.1007/s00371-014-0970-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-0970-1

Keywords

Navigation