Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Adaptive cluster rendering via regression analysis

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Monte Carlo ray tracing suffers noise and aliasing because of low sampling rate. We show that sparse samples can be used to generate high quality images based on feature cluster and regression analysis. Our algorithm has two main stages: adaptive sampling and polynomial reconstruction. In sampling stage, rendering space are organized into clusters based on their features. A feature vector is used to distinguish the different features, which contains gradient, variance and position. Clusters are progressively modified by adaptive sampling. In reconstruction stage, we model each cluster by smooth polynomial functions using regression analysis. The final image is synthesized by integrating these functions. The experiments show that our algorithm generates higher quality images than the previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mitchell, D.P.: Generating antialiased images at low sampling densities. Computer Graphics Proceedings. Annual Conference Series, ACM SIGGRAPH, vol. 21, pp. 65–72. ACM, Anaheim (1987)

  2. Clarberg, P., Jarosz, W., Akenine-Möller, T., Jensen, H.W.: Wavelet importance sampling: efficiently evaluating products of complex functions. In: Proceedings of ACM SIGGRAPH 2005. ACM Press, Los Angeles (2005). http://graphics.ucsd.edu/papers/wis/

  3. Bala, K., Walter, B., Greenberg, D.P.: Combining edges and points for interactive high-quality rendering. ACM Trans. Graph. 22(3), 631–640 (2003). http://doi.acm.org/10.1145/882262.882318

  4. Hachisuka, T., Jarosz, W., Weistroffer, R.P., Dale, K.: Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans Graph (Proceedings of the SIGGRAPH Conference) 27(3), 33:1–33:10 (2008)

    Google Scholar 

  5. Crow, F.: The aliasing problem in computer-generated shaded images. Commun. ACM 11, 799–805 (1977)

    Google Scholar 

  6. Mitchell, D.P.: Spectrally optimal sampling for distribution ray tracing. In: Computer Graphics Proceedings. Annual Conference Series, ACM SIGGRAPH, vol. 25, pp. 157–164. ACM, Las Vegas (1991)

  7. Liu, X.D., Wu, J.Z., Zheng, C.W.: Kd-tree based parallel adaptive rendering. Vis. Comput. 28(6–8), 613–623 (2012)

    Article  Google Scholar 

  8. Lepage, G.P.: An Adaptive Multidimensional Integration Program. Cornell University, NY, CLNS-80/447 (1980)

  9. Szécsi, L., Szirmay-Kalos, L., Kurt, M., Csébfalvi, B.: Adaptive sampling for environment mapping. In: Proceedings of the 26th Spring Conference on Computer Graphics, pp. 69–76. ACM, New York (2010). http://doi.acm.org/10.1145/1925059.1925073

  10. Overbeck, R.S., Donner, C., Ramamoorthi, R.: Adaptive wavelet rendering. ACM Trans. Graph. (Proceedings of the ACM SIGGRAPH Asia Conference) 28(5), 1–12 (2009)

    Article  Google Scholar 

  11. Durand, F., Holzschuch, N., Soler, C., Chan, E., Sillion, F.X.: A frequency analysis of light transport. ACM Trans. Graph. 24(3), 1115–1126 (2005). http://doi.acm.org/10.1145/1073204.1073320

  12. Durand, F.: 3D Visibility: analytical study and applications. PhD thesis, Grenoble University (1999). http://www-imagis.imag.fr

  13. Sen, P.: Silhouette Maps for Improved Texture Magnification. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 65–73. ACM, New York (2004). http://doi.acm.org/10.1145/1058129.1058139

  14. Rigau, J., Feixas, M., Sbert, M.: Refinement criteria based on F-divergences. In: Proceedings of the 14th Eurographics Workshop on Rendering, pp. 260–269. Eurographics Association, Switzerland (2003). http://dl.acm.org/citation.cfm?id=882404.882442

  15. Gamito, M.N., Maddock, S.C.: Accurate multidimensional Poisson-disk sampling. ACM Trans. Graph. 29(1) (2009)

  16. Sen, P., Darabi, S.: On filtering the noise from the random parameters in Monte Carlo rendering. ACM Trans. Graph. 31(3), 1–15 (2012). http://doi.acm.org/10.1145/2167076.2167083

    Google Scholar 

  17. Lehtinen, J., Aila, T., Chen, J., Laine, S., Durand, F.: Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. 30(4) (2011)

  18. Li, T.M., Wu, Y.T., Chuang, Y.Y.: Sure-based optimization for adaptive sampling and reconstruction. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH, Asia 2012) 31(6), 186:1–186:9 (2012)

    Google Scholar 

  19. Kajiya, J.T.: The rendering equation. Comput. Graph. (Proceedings of ACM SIGGRAPH 86) 143–150 (1986)

  20. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  21. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, New York (2006)

  22. http://www.luxrender.net/ (2008)

  23. Rousselle, F., Knaus, C., Zwicker, M.: Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. (Proceedings of the SIGGRAPH Asia Conference) 5(3), 1–10 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Dan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X.D., Zheng, C.W. Adaptive cluster rendering via regression analysis. Vis Comput 31, 105–114 (2015). https://doi.org/10.1007/s00371-013-0914-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0914-1

Keywords

Navigation