Abstract
Monte Carlo ray tracing suffers noise and aliasing because of low sampling rate. We show that sparse samples can be used to generate high quality images based on feature cluster and regression analysis. Our algorithm has two main stages: adaptive sampling and polynomial reconstruction. In sampling stage, rendering space are organized into clusters based on their features. A feature vector is used to distinguish the different features, which contains gradient, variance and position. Clusters are progressively modified by adaptive sampling. In reconstruction stage, we model each cluster by smooth polynomial functions using regression analysis. The final image is synthesized by integrating these functions. The experiments show that our algorithm generates higher quality images than the previous methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Mitchell, D.P.: Generating antialiased images at low sampling densities. Computer Graphics Proceedings. Annual Conference Series, ACM SIGGRAPH, vol. 21, pp. 65–72. ACM, Anaheim (1987)
Clarberg, P., Jarosz, W., Akenine-Möller, T., Jensen, H.W.: Wavelet importance sampling: efficiently evaluating products of complex functions. In: Proceedings of ACM SIGGRAPH 2005. ACM Press, Los Angeles (2005). http://graphics.ucsd.edu/papers/wis/
Bala, K., Walter, B., Greenberg, D.P.: Combining edges and points for interactive high-quality rendering. ACM Trans. Graph. 22(3), 631–640 (2003). http://doi.acm.org/10.1145/882262.882318
Hachisuka, T., Jarosz, W., Weistroffer, R.P., Dale, K.: Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans Graph (Proceedings of the SIGGRAPH Conference) 27(3), 33:1–33:10 (2008)
Crow, F.: The aliasing problem in computer-generated shaded images. Commun. ACM 11, 799–805 (1977)
Mitchell, D.P.: Spectrally optimal sampling for distribution ray tracing. In: Computer Graphics Proceedings. Annual Conference Series, ACM SIGGRAPH, vol. 25, pp. 157–164. ACM, Las Vegas (1991)
Liu, X.D., Wu, J.Z., Zheng, C.W.: Kd-tree based parallel adaptive rendering. Vis. Comput. 28(6–8), 613–623 (2012)
Lepage, G.P.: An Adaptive Multidimensional Integration Program. Cornell University, NY, CLNS-80/447 (1980)
Szécsi, L., Szirmay-Kalos, L., Kurt, M., Csébfalvi, B.: Adaptive sampling for environment mapping. In: Proceedings of the 26th Spring Conference on Computer Graphics, pp. 69–76. ACM, New York (2010). http://doi.acm.org/10.1145/1925059.1925073
Overbeck, R.S., Donner, C., Ramamoorthi, R.: Adaptive wavelet rendering. ACM Trans. Graph. (Proceedings of the ACM SIGGRAPH Asia Conference) 28(5), 1–12 (2009)
Durand, F., Holzschuch, N., Soler, C., Chan, E., Sillion, F.X.: A frequency analysis of light transport. ACM Trans. Graph. 24(3), 1115–1126 (2005). http://doi.acm.org/10.1145/1073204.1073320
Durand, F.: 3D Visibility: analytical study and applications. PhD thesis, Grenoble University (1999). http://www-imagis.imag.fr
Sen, P.: Silhouette Maps for Improved Texture Magnification. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 65–73. ACM, New York (2004). http://doi.acm.org/10.1145/1058129.1058139
Rigau, J., Feixas, M., Sbert, M.: Refinement criteria based on F-divergences. In: Proceedings of the 14th Eurographics Workshop on Rendering, pp. 260–269. Eurographics Association, Switzerland (2003). http://dl.acm.org/citation.cfm?id=882404.882442
Gamito, M.N., Maddock, S.C.: Accurate multidimensional Poisson-disk sampling. ACM Trans. Graph. 29(1) (2009)
Sen, P., Darabi, S.: On filtering the noise from the random parameters in Monte Carlo rendering. ACM Trans. Graph. 31(3), 1–15 (2012). http://doi.acm.org/10.1145/2167076.2167083
Lehtinen, J., Aila, T., Chen, J., Laine, S., Durand, F.: Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. 30(4) (2011)
Li, T.M., Wu, Y.T., Chuang, Y.Y.: Sure-based optimization for adaptive sampling and reconstruction. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH, Asia 2012) 31(6), 186:1–186:9 (2012)
Kajiya, J.T.: The rendering equation. Comput. Graph. (Proceedings of ACM SIGGRAPH 86) 143–150 (1986)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)
Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, New York (2006)
http://www.luxrender.net/ (2008)
Rousselle, F., Knaus, C., Zwicker, M.: Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. (Proceedings of the SIGGRAPH Asia Conference) 5(3), 1–10 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, X.D., Zheng, C.W. Adaptive cluster rendering via regression analysis. Vis Comput 31, 105–114 (2015). https://doi.org/10.1007/s00371-013-0914-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-013-0914-1