Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Constrained quadratic errors-in-variables fitting

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose an estimation method to fit conics and quadrics to data in the context of errors-in-variables where the fit is subject to constraints. The proposed algorithm is based on algebraic distance minimization and consists of solving a few generalized eigenvalue (or singular value) problems and is not iterative. Nonetheless, the algorithm produces accurate estimates, close to those obtained with maximum likelihood, while the constraints are also guaranteed to be satisfied. Important special cases, fitting ellipses, hyperbolas, parabolas, and ellipsoids to noisy data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The only exceptions are long thin and short fat ellipsoids, in which case the proposed method might (but not necessarily will) require iterations for the bisection search on the value of k in (13), in the same way as in [15].

References

  1. Al-Sharadqah, A., Chernov, N.: A doubly optimal ellipse fit. Comput. Stat. Data Anal. 56(9), 2771–2781 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chernov, N., Lesort, C.: Statistical efficiency of curve fitting algorithms. Comput. Stat. Data Anal. 47(4), 713–728 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chernov, N., Ma, H.: Least squares fitting of quadratic curves and surfaces. In: Yoshida, S.R. (ed.) Computer Vision, pp. 285–302. Nova Publ. (Nova Science Publishers), New York (2011)

    Google Scholar 

  4. Chojnacki, W., Brooks, M.J.: Revisiting Hartley’s normalized eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1172–1177 (2003)

    Article  Google Scholar 

  5. Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: FNS, CFNS and HEIV: A unifying approach. J. Math. Imaging Vis. 23(2), 175–183 (2005)

    Article  Google Scholar 

  6. Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct least squares fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)

    Article  Google Scholar 

  7. Halíř, R., Flusser, J.: Numerically stable direct least squares fitting of ellipses. In: Skala, V. (ed.) Proc. of International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media, pp. 125–132 (1998)

    Google Scholar 

  8. Harker, M., O’Leary, P., Zsombor-Murray, P.: Direct type-specific conic fitting and eigenvalue bias correction. Image Vis. Comput. 26(3), 372–381 (2008)

    Article  Google Scholar 

  9. Hunyadi, L., Vajk, I.: Identifying unstructured systems in the errors-in-variables context. In: Proc. of the 18th World Congress of the International Federation of Automatic Control, pp. 13104–13109 (2011)

    Google Scholar 

  10. Hunyadi, L., Vajk, I.: Modeling by fitting a union of polynomial functions to data. Int. J. Pattern Recogn. Artif. Intell. 27(2) (2013). Article ID 1350004

  11. Kenichi, K.: Further improving geometric fitting. In: Proc. of 5th International Conference on 3-D Digital Imaging and Modeling, Ottawa, Ontario, Canada, pp. 2–13 (2005)

    Google Scholar 

  12. Kenichi, K.: Statistical optimization for geometric fitting: theoretical accuracy bound and high order error analysis. Int. J. Comput. Vis. 80(2), 167–188 (2008)

    Article  Google Scholar 

  13. Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Comput. Stat. Data Anal. 55(6), 2197–2208 (2011)

    Article  MathSciNet  Google Scholar 

  14. Kukush, A.G., Markovsky, I., Van Huffel, S.: Consistent estimation in an implicit quadratic measurement error model. Comput. Stat. Data Anal. 47(1), 123–147 (2004)

    Article  MATH  Google Scholar 

  15. Li, Q., Griffiths, J.G.: Least squares ellipsoid specific fitting. In: Proc. of Geometric Modeling and Processing, pp. 335–340 (2004)

    Google Scholar 

  16. Markovsky, I., Kukush, A.G., Van Huffel, S.: Consistent least squares fitting of ellipsoids. Numer. Math. 98(1), 177–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bogdan, M., Meer, P.: A general method for errors-in-variables problems in computer vision. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 18–25 (2000)

    Google Scholar 

  18. O’Leary, P., Zsombor-Murray, P.J.: Direct and specific least-square fitting of hyperbolæ and ellipses. J. Electron. Imaging 13(3), 492–503 (2004)

    Article  Google Scholar 

  19. Schöne, R., Hanning, T.: Least squares problems with absolute quadratic constraints. J. Appl. Math. 2012. Article ID 312985

  20. Taubin, G.: Estimation of planar curves, surfaces and nonplanar space curves defined by implicit equations, with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13(11), 1115–1138 (1991)

    Article  Google Scholar 

  21. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vajk, I., Hetthéssy, J.: Identification of nonlinear errors-in-variables models. Automatica 39, 2099–2107 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their helpful comments. This work was supported by the fund of the Hungarian Academy of Sciences for control research, and partially by the European Union and the European Social Fund through project FuturICT.hu organized by VIKING Zrt. Balatonfüred (grant no. TÁMOP-4.2.2.C-11/1/KONV-2012-0013), and by the Hungarian Government via the National Development Agency financed by the Research and Technology Innovation Fund (grant no. KMR-12-1-2012-0441).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Hunyadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunyadi, L., Vajk, I. Constrained quadratic errors-in-variables fitting. Vis Comput 30, 1347–1358 (2014). https://doi.org/10.1007/s00371-013-0885-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0885-2

Keywords

Navigation