Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Comparing local shape descriptors

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Local shape descriptors can be used for a variety of tasks, from registration to comparison to shape analysis and retrieval. There have been a variety of local shape descriptors developed for these tasks, which have been evaluated in isolation or in pairs, but not against each other. We provide a survey of existing descriptors and a framework for comparing them. We perform a detailed evaluation of the descriptors using real data sets from a variety of sources. We first evaluate how stable these metrics are under changes in mesh resolution, noise, and smoothing. We then analyze the discriminatory ability of the descriptors for the task of shape matching. Finally, we compare the descriptors on a shape classification task. Our conclusion is that sampling the normal distribution and the mean curvature, using 25 samples, and reducing this data to 5–10 samples via Principal Components Analysis, provides robustness to noise and the best shape discrimination results. For shape classification, mean curvature sampled at the vertex or averaged, and the more global Shape Diameter Function, performed the best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002). doi:10.1109/34.993558

    Article  Google Scholar 

  2. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vis. 89, 266–286 (2010). doi:10.1007/s11263-009-0301-6

    Article  Google Scholar 

  3. Chua, C.S., Jarvis, R.: Point signatures: a new representation for 3d object recognition. Int. J. Comput. Vis. 25(1), 63–85 (1997). doi:10.1023/A:1007981719186

    Article  Google Scholar 

  4. Cipriano, G., Phillips, G.N. Jr., Gleicher, M.: Multi-scale surface descriptors. IEEE Trans. Vis. Comput. Graph. 15, 1201–1208 (2009). doi:10.1109/TVCG.2009.168

    Article  Google Scholar 

  5. Clarenz, U., Griebel, M., Rumpf, M., Schweitzer, M.A., Telea, A.: Feature sensitive multiscale editing on surfaces. Vis. Comput. 20, 329–343 (2004). doi:10.1007/s00371-004-0245-3

    Article  Google Scholar 

  6. Clarenz, U., Rumpf, M., Telea, A.: Robust feature detection and local classification for surfaces based on moment analysis. IEEE Trans. Vis. Comput. Graph. 10, 516–524 (2004). doi:10.1109/TVCG.2004.34

    Article  Google Scholar 

  7. Connolly, M.L.: Measurement of protein surface shape by solid angles. J. Mol. Graph. 4, 3–6 (1986). doi:10.1016/0263-7855(86)80086-8

    Article  Google Scholar 

  8. de Goes, F., Goldenstein, S., Velho, L.: A hierarchical segmentation of articulated bodies. In: SGP ’08, SGP ’08, pp. 1349–1356 (2008). URL http://portal.acm.org/citation.cfm?id=1731309.1731315

    Google Scholar 

  9. Desbrun, M., Meyer, M., Schroeder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH ’99, pp. 317–324 (1999). doi:10.1145/311535.311576

    Chapter  Google Scholar 

  10. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21, 209–218 (2002)

    Article  Google Scholar 

  11. Fehr, J., Streicher, A., Burkhardt, H.: A bag of features approach for 3d shape retrieval. In: Proceedings of the 5th International Symposium on Advances in Visual Computing: Part I, ISVC ’09, pp. 34–43. Springer, Berlin, Heidelberg (2009). doi:10.1007/978-3-642-10331-5_4

    Google Scholar 

  12. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: inflation, flattening, and a surface-based coordinate system. NeuroImage 9(2), 195–207 (1999). doi:10.1006/nimg.1998.0396

    Article  Google Scholar 

  13. Gal, R., Shamir, A., Cohen-Or, D.: Pose-oblivious shape signature. IEEE Trans. Vis. Comput. Graph. 13, 261–271 (2007). doi:10.1109/TVCG.2007.45

    Article  Google Scholar 

  14. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: SIGGRAPH ’97, pp. 209–216 (1997). doi:10.1145/258734.258849

    Chapter  Google Scholar 

  15. Gatzke, T., Grimm, C., Garland, M., Zelinka, S.: Curvature maps for local shape comparison. In: Shape Modeling and Applications, pp. 246–255 (2005). doi:10.1109/SMI.2005.13

    Google Scholar 

  16. Goldfeather, J., Interrante, V.: A novel cubic-order algorithm for approximating principal direction vectors. ACM Trans. Graph. 23(1), 45–63 (2004). doi:10.1145/966131.966134

    Article  Google Scholar 

  17. Grimm, C., Li, R., Heider, P., Pierre-Pierre, A., Mueller, R.: Poster: A comparison of local shape descriptors for biological applications. In: IEEE International Conference on Computational Advances in Bio and Medical Sciences, p. 245 (2011). doi:10.1109/ICCABS.2011.5729898

    Google Scholar 

  18. Heider, P., Pierre-Pierre, A., Li, R., Grimm, C.: Local shape descriptors, a survey and evaluation. In: 3DOR, pp. 49–56 (2011)

    Google Scholar 

  19. Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vis. Comput. 10, 557–565 (1992). doi:10.1016/0262-8856(92)90076-F

    Article  Google Scholar 

  20. Kortgen, M., Park, G.J., Novotni, M., Klein, R.: 3d shape matching with 3d shape contexts. In: The 7th Central European Seminar on Computer Graphics (2003)

    Google Scholar 

  21. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24, 659–666 (2005). doi:10.1145/1073204.1073244

    Article  Google Scholar 

  22. Li, X., Godil, A.: Exploring the bag-of-words method for 3d shape retrieval. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 437–440 (2009). doi:10.1109/ICIP.2009.5414415

    Chapter  Google Scholar 

  23. Li, X., Guskov, I.: Multi-scale features for approximate alignment of point-based surfaces. In: SGP 2005 (2005). URL http://portal.acm.org/citation.cfm?id=1281920.1281955

    Google Scholar 

  24. Mortara, M., Patane, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38(1), 227–248 (2003). doi:10.1007/s00453-003-1051-4

    Article  MathSciNet  Google Scholar 

  25. Ong, J.L., Seghouane, A.K.: From point to local neighbourhood: polyp detection in ct colonography using geodesic ring neighbourhoods. IEEE Trans. Image Process. (2010). URL http://www.biomedsearch.com/nih/From-Point-to-Local-Neighbourhood/20840898.html

  26. Pottmann, H., Wallner, J., Huang, Q.X., Yang, Y.L.: Integral invariants for robust geometry processing. Comput. Aided Geom. Des. 26, 37–60 (2009). doi:10.1016/j.cagd.2008.01.002

    Article  MathSciNet  MATH  Google Scholar 

  27. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  28. Rustamov, R.M.: Laplace–Beltrami eigenfunctions for deformation invariant shape representation. In: SGP 2007, pp. 225–233 (2007). URL http://portal.acm.org/citation.cfm?id=1281991.1282022

    Google Scholar 

  29. Schmidt, R., Grimm, C., Wyvill, B.: Interactive decal compositing with discrete exponential maps. In: SIGGRAPH, vol. ’06, pp. 605–613. ACM Press, New York (2006). doi:10.1145/1179352.1141930

    Google Scholar 

  30. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24, 249–259 (2008). doi:10.1007/s00371-007-0197-5

    Article  Google Scholar 

  31. Stein, F., Medioni, G.: Structural indexing: efficient 3-d object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 125–145 (1992). doi:10.1109/34.121785

    Article  Google Scholar 

  32. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: SGP ’09, SGP ’09, pp. 1383–1392 (2009). URL http://portal.acm.org/citation.cfm?id=1735603.1735621

    Google Scholar 

  33. Yamany, S.M., Farag, A.A.: Free-form surface registration using surface signatures. In: ICCV ’99, p. 1098. IEEE Computer Society, Los Alamitos (1999)

    Google Scholar 

  34. Yamany, S.M., Farag, A.A.: Surfacing signatures: an orientation independent free-form surface representation scheme for the purpose of objects registration and matching. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1105–1120 (2002). doi:10.1109/TPAMI.2002.1023806

    Article  Google Scholar 

  35. Zelinka, S., Garland, M.: Similarity-based surface modelling using geodesic fans. In: SGP ’04, pp. 204–213. ACM Press, New York (2004). doi:10.1145/1057432.1057460

    Chapter  Google Scholar 

Download references

Acknowledgements

Funded in part by National Science Foundation grants CCF 0702662, DBI 1053171, DMS 0540701, NIH T90 DA022871, Shandong Taishan Fund, NNSF of China, Ministry of Education, People’s Republic of China (985 & 211), Shandong University, and the EU CILIA Project. Thanks to Dr. Bayly for the ferret brains, Dr. Daniel Low for the mandibles, and Dr. Crisco for the radius and ulna bones.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Grimm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heider, P., Pierre-Pierre, A., Li, R. et al. Comparing local shape descriptors. Vis Comput 28, 919–929 (2012). https://doi.org/10.1007/s00371-012-0725-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0725-9

Keywords

Navigation