Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fast level set image and video segmentation using new evolution indicator operators

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose an effective level set evolution method for robust object segmentation in real images. We construct an effective region indicator and an multiscale edge indicator, and use these two indicators to adaptively guide the evolution of the level set function. The multiscale edge indicator is defined in the gradient domain of the multiscale feature-preserving filtered image. The region indicator is built on the similarity map between image pixels and user specified interest regions, where the similarity map is computed using Gaussian Mixture Models (GMM). Then we combine these two methods to develop a new mixing edge stop function, which makes the level set method more robust to initial active contour setting, and forces the level set to evolve adaptively based on the image content. Furthermore, we apply an acceleration approach to speed up our evolution process, which yields real time segmentation performance. Finally, we extend the proposed approach to video segmentation for achieving effective target tracking results. As the results show, our approach is effective for image and video segmentation and works well to accurately detect the complex object boundaries in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adalsteinsson, D., Sethian, J.: A fast level set method for propagating interfaces. J. Comput. Phys. 118(2), 269–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting (2007)

  3. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: ICCV 2001, vol. 1, pp. 105–112. IEEE, New York (2001)

    Google Scholar 

  4. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  6. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  7. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. (TOG) 26(3), 103 (2007)

    Article  Google Scholar 

  8. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007)

    Article  Google Scholar 

  9. Criminisi, A., Sharp, T., Blake, A.: Geos: Geodesic image segmentation. In: ECCV’08 Proceedings of the 10th European Conference on Computer Vision: Part I. Springer, Marseille (2008)

    Google Scholar 

  10. Duchenne, O., Audibert, J., Keriven, R., Ponce, J., Ségonne, F.: Segmentation by transduction. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE, New York (2008)

    Google Scholar 

  11. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 67 (2008)

    Article  Google Scholar 

  12. Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale shape and detail enhancement from multi-light image collections. ACM Trans. Graph. 26(3), 51 (2007)

    Article  Google Scholar 

  13. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  14. Lefohn, A., Kniss, J., Hansen, C., Whitaker, R.: Interactive deformation and visualization of level set surfaces using graphics hardware. In: IEEE Visualization 2003, p. 11. IEEE Comput. Soc., Los Alamitos (2003)

    Google Scholar 

  15. Li, C., Xu, C., Gui, C., Fox, M.: Level set evolution without re-initialization: A new variational formulation. In: CVPR, pp. 1063–6919 (2005)

    Google Scholar 

  16. Li, Y., Sun, J., Tang, C., Shum, H.: Lazy snapping. ACM Trans. Graph. (TOG) 23(3), 303–308 (2004)

    Article  Google Scholar 

  17. Liao, B., Xiao, C., Liu, M., Dong, Z., Peng, Q.: Fast hierarchical animated object decomposition using approximately invariant signature. The Visual Computer, pp. 1–13 (2011)

  18. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2003)

    MATH  Google Scholar 

  19. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Paragios, N., Deriche, R.: Geodesic active regions for supervised texture segmentation. In: ICCV, p. 688. IEEE Comput. Soc., Los Alamitos (1999)

    Google Scholar 

  21. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method* 1. J. Comput. Phys. 155(2), 410–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions (2009)

  23. Qu, Y., Wong, T., Heng, P.: Manga colorization. ACM Trans. Graph. (TOG) 25(3), 1214–1220 (2006)

    Article  Google Scholar 

  24. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. In: ACM Transactions on Graphics (TOG), vol. 23, pp. 309–314. ACM, New York (2004)

    Google Scholar 

  25. Santner, J., Pock, T., Bischof, H.: Interactive multi-label segmentation. In: ACCV, pp. 397–410 (2011)

    Google Scholar 

  26. Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  27. Shi, Y., Karl, W.: Real-Time Tracking Using Level Sets. In: CVPR, pp. 34–41 (2005)

    Google Scholar 

  28. Sussman, M., Fatemi, E.: An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20(4), 1165–1191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp. 839–846. IEEE, New York (1998)

    Google Scholar 

  30. Unger, M., Pock, T., Trobin, W., Cremers, D., Bischof, H.: Tvseg-interactive total variation based image segmentation. In: BMVC, Leeds, UK (2008)

    Google Scholar 

  31. Vemuri, B., Chen, Y.: Joint image registration and segmentation. Geometric level set methods in imaging, vision, and graphics, pp. 251–269 (2003)

  32. Xia, T., Wu, Q., Chen, C., Yu, Y.: Lazy texture selection based on active learning. Vis. Comput. 26(3), 157–169 (2010)

    Article  Google Scholar 

  33. Xiao, C., Gan, J., Hu, X.: Fast level set image segmentation using new evolution indicator operators. In: Pacific Graphics (2011), short paper. Wiley Online Library

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Basic Research Program of China (No. 2012CB725303), NSFC (No. 60803081, No. 61070081), Open Project Program of the State Key Laboratory for Novel Software Technology (kfkt2010B05), the Open Project Program of the State Key Lab of CAD&CG (Grant No. A1208), and Luojia Outstanding Young Scholar Program of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxia Xiao.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(AVI 371 kB)

(AVI 371 kB)

(AVI 252 kB)

(AVI 327 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, C., Gan, J. & Hu, X. Fast level set image and video segmentation using new evolution indicator operators. Vis Comput 29, 27–39 (2013). https://doi.org/10.1007/s00371-012-0672-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0672-5

Keywords

Navigation