Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fluid simulation with adaptively sharpening and embedded boundary conditions

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present a physically based technique for simulating inviscid fluids. Our contribution is concerned with two issues. First, for solving the advection equation, we introduce a hybrid scheme that couples the FLIP scheme with the semi-Lagrangian scheme by adaptively distributing implicit particles and using a transition layer to propagate information. Secondly, for solving pressure, we develop a flux based scheme that can embed arbitrary solid boundaries into a Poisson equation. And based on this scheme we make further improvement to achieve two-way fluid/solid coupling on an octree structure with second-order accuracy. Finally, the experimental results demonstrate that our hybrid scheme for advection can preserve relatively fine surface details with less computation expenditure; and simultaneously our robust pressure solver can handle both stationary and moving obstacles more efficiently compared with unstructured meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Stam, J.: Stable fluids. In: SIGGRAPH 1999, August 1999, pp. 121–128 (1999)

    Chapter  Google Scholar 

  2. Foster, N., Fedkiw, R.: Practical animation of liquids. In: SIGGRAPH 2001, August 2001, pp. 23–30 (2001)

    Chapter  Google Scholar 

  3. Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. In: SIGGRAPH 2002, August 2002, pp. 736–744 (2002)

    Chapter  Google Scholar 

  4. Nguyen, D.Q., Fedkiw, R., Jensen, H.W.: Physically based modeling and animation of fire. ACM Trans. Graph. 21(3), 721–728 (2002)

    Article  Google Scholar 

  5. Kim, J., Cha, D., Chang, B.: Practical animation of turbulent splashing water. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium, pp. 335–344 (2006)

    Google Scholar 

  6. Losasso, F., Shinar, T., Selle, A., Fedkiw, R.: Multiple interacting liquids. In: SIGGRAPH06, ACM Trans. Graph., vol. 25, pp. 812–819 (2006)

    Google Scholar 

  7. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: SIGGRAPH 2001, August 2001, pp. 15–22 (2001)

    Chapter  Google Scholar 

  8. Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24(3), 910–914 (2005)

    Article  Google Scholar 

  9. Kim, B., Liu, Y., Llamas, I., et al.: FlowFixer: using BFECC for fluid simulation. In: Eurographics Workshop on Natural Phenomena (2005)

    Google Scholar 

  10. Molemaker, J., Cohen, M.J., Patel, S., et al.: Low viscosity flow simulations for animation. In: Symposium on Computer Animation 2008, (2008)

    Google Scholar 

  11. Osher, S., Fedkiw, R.: Level-Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    MATH  Google Scholar 

  12. Song, O.-Y., Shin, H., Ko, H.-S.: Stable but nondissipative water. ACM Trans. Graph. 24(1), 81–97 (2005)

    Article  Google Scholar 

  13. Harlow, F.H.: The particle-in-cell method for numerical solution of problems in fluid dynamics. In: Experimental Arithmetic, High-Speed Computations and Mathematics (1963)

    Google Scholar 

  14. Brackbill, J.U., Ruppel, H.M.: FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 314–343 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Patrick, M., Keenan, C., Dmitry, P., Yiying, T., Mathieu, D.: Energy-preserving integrators for fluid animation. In: SIGGRAPH 2009, August 2009

    Google Scholar 

  16. Kim, T., Thürey, N., James, D.: Wavelet turbulence for fluid simulation. In: SIGGRAPH 2008, August 2008

    Google Scholar 

  17. Houston, B., Bond, C., Wiebe, M.: A unified approach for modeling complex occlusions in fluid simulations. In: Proc. SIGGRAPH Sketches & Applications (2003)

    Google Scholar 

  18. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., Fedkiw, R.: Directable photorealistic liquids. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 195–200 (2004)

    Google Scholar 

  19. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23(3), 457–462 (2004) (Proc. SIGGRAPH 2004)

    Article  Google Scholar 

  20. Feldman, B.E., O’brien, J.F., Klingner, B.M.: Animating gases with hybrid meshes. ACM Trans. Graph. 24(3), 904–909 (2005) (Proc. SIGGRAPH 2005)

    Article  Google Scholar 

  21. Klingner, B.M., Feldman, B.E., Chentanez, N., O’Brien, J.F.: Fluid animation with dynamic meshes. ACM Trans. Graph. 25(3), 820–825 (2006) (Proc. SIGGRAPH 2006)

    Article  Google Scholar 

  22. Jie, T., Xubo, Y.: Physically-based fluid animation: a survey. Sci. China Ser. F 25(1), 1–17 (2008)

    Google Scholar 

  23. Müller, M., Schirm, S., Teschner, M., Heidelberger, B., Gross, M.: Interaction of fluids with deformable solids. Computer Animation and Virtual World 15(3), 159–171 (2004)

    Article  Google Scholar 

  24. Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 377–384 (2004) (Proc. SIGGRAPH 2004)

    Article  Google Scholar 

  25. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chentanez, N., Goktekin, T.G., Feldman, B.E., O’Brien, J.F.: Simultaneous coupling of fluids and deformable bodies. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 83–89 (2006)

    Google Scholar 

  27. Batty, C., Bertails, F., Bridson, R.: A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26(3), 100–107 (2007) (Proc. SIGGRAPH 2007)

    Article  Google Scholar 

  28. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., Fedkiw, R.: Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27(46), 1–9 (2008)

    Article  Google Scholar 

  29. Li, W., Wei, X.M., Kaufman, A.: Implementing lattice and Boltzmann computation on graphics hardware. Vis. Comput. 19, 444–456 (2003)

    Google Scholar 

  30. Guendelman, E., Selle, A., Losasso, F., Fedkiw, R.: Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24(3), 973–981 (2005) (Proc. SIGGRAPH 2005)

    Article  Google Scholar 

  31. Williams, B.W.: Fluid surface reconstruction from particles. Master thesis, The University of British Columbia, 1–57 February 2008

  32. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24(3), 965–972 (2005) (Proc. SIGGRAPH 2005)

    Article  Google Scholar 

  33. NG, Y.T., Min, C., Gibou, F.: An efficient fluid–solid coupling algorithm for single-phase flows. J. Comput. Phys. 228, 8807–8829 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Min, C., Gibou, F., Ceniceros, H.: A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids. J. Comput. Phys. 218, 123–140 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Losasso, F., Fedkiw, R., Osher, S.: Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35, 995–1010 (2005)

    Article  MathSciNet  Google Scholar 

  36. Batty, C., Bridson, R.: Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In: Proc. Symposium on Computer Animation 2008, pp. 219–228, July 2008, (2008)

    Google Scholar 

  37. Enright, D., Nguyen, D., Gibou, F., Fedkiw, R.: Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In: Proc. of the 4th ASME-JSME Joint Fluids Engineering Conference (2003)

    Google Scholar 

  38. Sallee, J.F.: The middle-cut triangulations of the n-cube. SIAM J. Algebr. Discrete Methods 5, 407–419 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wojtan, C., Thürey, N., Gross, M., Turk, G.: Physics-inspired topology changes for thin fluid features. In: SIGGRAPH 2010, August 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Chen, W. Fluid simulation with adaptively sharpening and embedded boundary conditions. Vis Comput 28, 425–434 (2012). https://doi.org/10.1007/s00371-011-0624-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0624-5

Keywords

Navigation