Abstract
This paper presents a versatile detail editing approach for triangular meshes based on filtering the Laplacian coordinates. More specifically, we first compute the Laplacian coordinates of the mesh vertices, then filter the Laplacian coordinates, and finally reconstruct the mesh from the filtered Laplacian coordinates by solving a linear least square system. The proposed detail editing method includes not only feature preserving smoothing but also enhancing. Furthermore, the proposed approach allows interactive editing of some user-specified frequencies and regions. Experimental results demonstrate that our method is much more versatile and faster than the existing methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Sorkine, O.: Differential representations for mesh processing. Comput. Graph. Forum 25(4), 789–807 (2006)
Taubin, G.: A signal processing approach to fair surface design. In: Proc. of SIGGRAPH’1995, pp. 351–358 (1995)
Yagou, H., Belyaevy, A., Weiz, D.: High-boost mesh filtering for 3-D shape enhancement. J. Three Dimens. Images 17(1), 170–175 (2003)
Hirokazu, Y., Yutaka, O., Alexander, B.: Mesh smoothing via mean and median filtering applied to face normals. In: Proc. of the Geometric Modeling and Processing, p. 2006 (2002)
Su, Z., Wang, H., Cao, J.: Mesh denoising based on differential coordinates. In: Proc. of International Conference on Shape Modeling and Applications 2009, pp. 1–6 (2009)
Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.-Y.: Mesh editing with Poisson-based gradient field manipulation. In: Proc. of ACM SIGGRAPH’2004, pp. 644–651 (2004)
Au, O.K.-C., Tai, C.-L., Fu, H., Liu, L.: Mesh editing with curvature flow Laplacian. In: Proc. of Eurographics Symposium on Geometry Processing, pp. 191–199 (2005)
Eigensatz, M., Sumner, R.W., Pauly, M.: Curvature-domain shape processing. Comput. Graph. Forum 27(10), 241–250 (2008)
Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. In: Proc. of ACM GRAPHITE’1999, pp. 325–334 (1999)
Kim, B., Rossignac, J.: Geofilter: Geometric selection of mesh filter parameters. Comput. Graph. Forum 24, 295–302 (2005)
Zhou, K., Bao, H., Shi, J.: 3D surface filtering using spherical harmonics. Comput. Aided Des. 36(4), 363–375 (2004)
Vallet, B., Levy, B.: Spectral geometry processing with manifold harmonics. Comput. Graph. Forum 27(2), 251–260 (2008)
Taubin, G., Zhang, T., Golub, G.: Optimal surface smoothing as filter design. In: Proc. of the 4th European Conference on Computer Vision, pp. 283–292 (1996)
Desbrun, M., Meyer, M., Schroder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proc. of SIGGRAPH’1999, pp. 317–324 (1999)
Zhang, H., Fiume, E.: Butterworth filtering and implicit fairing of irregular meshes. In: Proc. of 11th Pacific Conference on Computer Graphics and Applications, pp. 502–506 (2003)
Vollmer, J., Mencl, R., Müller, H.: Improved Laplacian smoothing of noisy surface meshes. Comput. Graph. Forum 18(3), 131–138 (1999)
Taubin, G.: Linear anisotropic mesh filtering. IBM Research Report RC2213 (2001)
Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. In: Proc. of SIGGRAPH’2003, pp. 943–949 (2003)
Chen, C.-Y., Cheng, K.-Y.: A sharpness dependent filter for mesh smoothing. Comput. Aided Geom. Des. 22(5), 376–391 (2005)
Lee, K.-W., Wang, W.-P.: Feature-preserving mesh denoising via bilateral normal filtering. In: Proc. of the Ninth International Conference on Computer Aided Design and Computer Graphics, pp. 275–280 (2006)
Sun, X., Rosin, P.L., Martina, R.R., Langbeina, F.C.: Random walks for feature-preserving mesh denoising. Comput. Aided Geom. Des. 25(7), 437–456 (2008)
Au, O.K.-C., Tai, C.-L., Liu, L., Fu, H.: Dual Laplacian editing for meshes. IEEE Trans. Vis. Comput. Graph. 12(3), 191–199 (2005)
Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: Proc. of ACM GRAPHITE’2006, pp. 381–389 (2006)
Liu, L., Tai, C.-L., Ji, Z., Wang, G.: Non-iterative approach for global mesh optimization. Comput. Aided Des. 39(9), 772–782 (2007)
Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Anisotropic feature-preserving denoising of height fields and bivariate data. In: Proc. of Graphics Interface, pp. 145–152 (2000)
Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Proc. of Visualization and Mathematics, pp. 35–57 (2003)
Bajaj, C.L., Xu, G.: Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans. Graph. 22(1), 4–32 (2003)
Klaus, H., Konrad, P.: Anisotropic filtering of non-linear surface features. Comput. Graph. Forum 23(3), 391–400 (2004)
Zhao, H., Xu, G.: Triangular surface mesh fairing via Gaussian curvature flow. J. Comput. Appl. Math. 195(1), 300–311 (2006)
Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. In: Proceedings of SIGGRAPH’2003, pp. 950–953 (2003)
Alexa, M.: Wiener filtering of meshes. In: Proc. of International Conference on Shape Modeling and Applications 2002, pp. 51–57 (2002)
Choudhury, P., Tumblin, J.: The trilateral filter for high contrast images and meshes. In: Proc. of ACM SIGGRAPH 2005 Courses, p. 5 (2005)
Yoshizawa, S., Belyaev, A., Seidel, H.-P.: Smoothing by example: Mesh denoising by averaging with similarity-based weights. In: Proceedings of IEEE International Conference on Shape Modeling and Applications 2006, pp. 38–44 (2006)
Liu, X., Bao, H., Heng, P., Wong, T., Peng, Q.: Constrained fairing for meshes. Comput. Graph. Forum 20(12), 115–123 (2001)
Ouafdi, A.F.E., Ziou, D., Krim, H.: A smart stochastic approach for manifolds smoothing. Comput. Graph. Forum 27(5), 1357–1364 (2008)
Li, Z., Ma, L., Jin, X., Zheng, Z.: A new feature-preserving mesh-smoothing algorithm. Vis. Comput. 25(2), 139–148 (2009)
Alexa, M.: Differential coordinates for local mesh morphing and deformation. Vis. Comput. 19(2), 105–114 (2003)
Lipman, Y., Sorkine, O., Alexa, M., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.-P.: Laplacian framework for interactive mesh editing. Int. J. Shape Model. 11(1), 43–62 (2005)
Sorkine, O., Cohen-Or, D.: Least-squares meshes. In: Proc. of Shape Modeling International 2004, pp. 191–199 (2004)
Sorkine, O., Cohen-Or, D., Toledo, S.: High-pass quantization for mesh encoding. In: Proc. of the Eurographics Symposium on Geometry Processing, pp. 42–51 (2003)
Sorkine, O., Cohen-Or, D., Irony, D., Toledo, S.: Geometry-aware bases for shape approximation. IEEE Trans. Vis. Comput. Graph. 11(2), 171–180 (2005)
Botsch, M., Pauly, M., Kobbelt, L., Alliez, P., Lvy, B., Bischoff, S., Rssl, C.: Geometric modeling based on polygonal meshes. In: Eurographics Tutorial Notes (2008)
Taubin, G.: Geometric signal processing on polygonal meshes. In: Proc. of EUROGRAPHICS’2000: STAR-State of the Art Report (2000)
Fu, H.: Cholmodwrapper. http://www.mpi-inf.mpg.de (2008)
Davis, T.: Cholmod algorithm. http://www.cise.ufl.edu/research/sparse/cholmod/ (2005)
Levy, B.: http://alice.loria.fr/index.php/software.html (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, H., Chen, H., Su, Z. et al. Versatile surface detail editing via Laplacian coordinates. Vis Comput 27, 401–411 (2011). https://doi.org/10.1007/s00371-011-0558-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-011-0558-y