Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Versatile surface detail editing via Laplacian coordinates

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a versatile detail editing approach for triangular meshes based on filtering the Laplacian coordinates. More specifically, we first compute the Laplacian coordinates of the mesh vertices, then filter the Laplacian coordinates, and finally reconstruct the mesh from the filtered Laplacian coordinates by solving a linear least square system. The proposed detail editing method includes not only feature preserving smoothing but also enhancing. Furthermore, the proposed approach allows interactive editing of some user-specified frequencies and regions. Experimental results demonstrate that our method is much more versatile and faster than the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sorkine, O.: Differential representations for mesh processing. Comput. Graph. Forum 25(4), 789–807 (2006)

    Article  Google Scholar 

  2. Taubin, G.: A signal processing approach to fair surface design. In: Proc. of SIGGRAPH’1995, pp. 351–358 (1995)

    Google Scholar 

  3. Yagou, H., Belyaevy, A., Weiz, D.: High-boost mesh filtering for 3-D shape enhancement. J. Three Dimens. Images 17(1), 170–175 (2003)

    Google Scholar 

  4. Hirokazu, Y., Yutaka, O., Alexander, B.: Mesh smoothing via mean and median filtering applied to face normals. In: Proc. of the Geometric Modeling and Processing, p. 2006 (2002)

    Google Scholar 

  5. Su, Z., Wang, H., Cao, J.: Mesh denoising based on differential coordinates. In: Proc. of International Conference on Shape Modeling and Applications 2009, pp. 1–6 (2009)

    Google Scholar 

  6. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.-Y.: Mesh editing with Poisson-based gradient field manipulation. In: Proc. of ACM SIGGRAPH’2004, pp. 644–651 (2004)

    Google Scholar 

  7. Au, O.K.-C., Tai, C.-L., Fu, H., Liu, L.: Mesh editing with curvature flow Laplacian. In: Proc. of Eurographics Symposium on Geometry Processing, pp. 191–199 (2005)

    Google Scholar 

  8. Eigensatz, M., Sumner, R.W., Pauly, M.: Curvature-domain shape processing. Comput. Graph. Forum 27(10), 241–250 (2008)

    Article  Google Scholar 

  9. Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. In: Proc. of ACM GRAPHITE’1999, pp. 325–334 (1999)

    Google Scholar 

  10. Kim, B., Rossignac, J.: Geofilter: Geometric selection of mesh filter parameters. Comput. Graph. Forum 24, 295–302 (2005)

    Article  Google Scholar 

  11. Zhou, K., Bao, H., Shi, J.: 3D surface filtering using spherical harmonics. Comput. Aided Des. 36(4), 363–375 (2004)

    Article  Google Scholar 

  12. Vallet, B., Levy, B.: Spectral geometry processing with manifold harmonics. Comput. Graph. Forum 27(2), 251–260 (2008)

    Article  Google Scholar 

  13. Taubin, G., Zhang, T., Golub, G.: Optimal surface smoothing as filter design. In: Proc. of the 4th European Conference on Computer Vision, pp. 283–292 (1996)

    Google Scholar 

  14. Desbrun, M., Meyer, M., Schroder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proc. of SIGGRAPH’1999, pp. 317–324 (1999)

    Google Scholar 

  15. Zhang, H., Fiume, E.: Butterworth filtering and implicit fairing of irregular meshes. In: Proc. of 11th Pacific Conference on Computer Graphics and Applications, pp. 502–506 (2003)

    Google Scholar 

  16. Vollmer, J., Mencl, R., Müller, H.: Improved Laplacian smoothing of noisy surface meshes. Comput. Graph. Forum 18(3), 131–138 (1999)

    Article  Google Scholar 

  17. Taubin, G.: Linear anisotropic mesh filtering. IBM Research Report RC2213 (2001)

  18. Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. In: Proc. of SIGGRAPH’2003, pp. 943–949 (2003)

    Google Scholar 

  19. Chen, C.-Y., Cheng, K.-Y.: A sharpness dependent filter for mesh smoothing. Comput. Aided Geom. Des. 22(5), 376–391 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lee, K.-W., Wang, W.-P.: Feature-preserving mesh denoising via bilateral normal filtering. In: Proc. of the Ninth International Conference on Computer Aided Design and Computer Graphics, pp. 275–280 (2006)

    Google Scholar 

  21. Sun, X., Rosin, P.L., Martina, R.R., Langbeina, F.C.: Random walks for feature-preserving mesh denoising. Comput. Aided Geom. Des. 25(7), 437–456 (2008)

    Article  MATH  Google Scholar 

  22. Au, O.K.-C., Tai, C.-L., Liu, L., Fu, H.: Dual Laplacian editing for meshes. IEEE Trans. Vis. Comput. Graph. 12(3), 191–199 (2005)

    Google Scholar 

  23. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: Proc. of ACM GRAPHITE’2006, pp. 381–389 (2006)

    Google Scholar 

  24. Liu, L., Tai, C.-L., Ji, Z., Wang, G.: Non-iterative approach for global mesh optimization. Comput. Aided Des. 39(9), 772–782 (2007)

    Article  Google Scholar 

  25. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Anisotropic feature-preserving denoising of height fields and bivariate data. In: Proc. of Graphics Interface, pp. 145–152 (2000)

    Google Scholar 

  26. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Proc. of Visualization and Mathematics, pp. 35–57 (2003)

    Google Scholar 

  27. Bajaj, C.L., Xu, G.: Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans. Graph. 22(1), 4–32 (2003)

    Article  Google Scholar 

  28. Klaus, H., Konrad, P.: Anisotropic filtering of non-linear surface features. Comput. Graph. Forum 23(3), 391–400 (2004)

    Article  Google Scholar 

  29. Zhao, H., Xu, G.: Triangular surface mesh fairing via Gaussian curvature flow. J. Comput. Appl. Math. 195(1), 300–311 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. In: Proceedings of SIGGRAPH’2003, pp. 950–953 (2003)

    Google Scholar 

  31. Alexa, M.: Wiener filtering of meshes. In: Proc. of International Conference on Shape Modeling and Applications 2002, pp. 51–57 (2002)

    Google Scholar 

  32. Choudhury, P., Tumblin, J.: The trilateral filter for high contrast images and meshes. In: Proc. of ACM SIGGRAPH 2005 Courses, p. 5 (2005)

    Chapter  Google Scholar 

  33. Yoshizawa, S., Belyaev, A., Seidel, H.-P.: Smoothing by example: Mesh denoising by averaging with similarity-based weights. In: Proceedings of IEEE International Conference on Shape Modeling and Applications 2006, pp. 38–44 (2006)

    Google Scholar 

  34. Liu, X., Bao, H., Heng, P., Wong, T., Peng, Q.: Constrained fairing for meshes. Comput. Graph. Forum 20(12), 115–123 (2001)

    Article  MATH  Google Scholar 

  35. Ouafdi, A.F.E., Ziou, D., Krim, H.: A smart stochastic approach for manifolds smoothing. Comput. Graph. Forum 27(5), 1357–1364 (2008)

    Article  Google Scholar 

  36. Li, Z., Ma, L., Jin, X., Zheng, Z.: A new feature-preserving mesh-smoothing algorithm. Vis. Comput. 25(2), 139–148 (2009)

    Article  Google Scholar 

  37. Alexa, M.: Differential coordinates for local mesh morphing and deformation. Vis. Comput. 19(2), 105–114 (2003)

    MATH  Google Scholar 

  38. Lipman, Y., Sorkine, O., Alexa, M., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.-P.: Laplacian framework for interactive mesh editing. Int. J. Shape Model. 11(1), 43–62 (2005)

    Article  Google Scholar 

  39. Sorkine, O., Cohen-Or, D.: Least-squares meshes. In: Proc. of Shape Modeling International 2004, pp. 191–199 (2004)

    Chapter  Google Scholar 

  40. Sorkine, O., Cohen-Or, D., Toledo, S.: High-pass quantization for mesh encoding. In: Proc. of the Eurographics Symposium on Geometry Processing, pp. 42–51 (2003)

    Google Scholar 

  41. Sorkine, O., Cohen-Or, D., Irony, D., Toledo, S.: Geometry-aware bases for shape approximation. IEEE Trans. Vis. Comput. Graph. 11(2), 171–180 (2005)

    Article  Google Scholar 

  42. Botsch, M., Pauly, M., Kobbelt, L., Alliez, P., Lvy, B., Bischoff, S., Rssl, C.: Geometric modeling based on polygonal meshes. In: Eurographics Tutorial Notes (2008)

    Google Scholar 

  43. Taubin, G.: Geometric signal processing on polygonal meshes. In: Proc. of EUROGRAPHICS’2000: STAR-State of the Art Report (2000)

    Google Scholar 

  44. Fu, H.: Cholmodwrapper. http://www.mpi-inf.mpg.de (2008)

  45. Davis, T.: Cholmod algorithm. http://www.cise.ufl.edu/research/sparse/cholmod/ (2005)

  46. Levy, B.: http://alice.loria.fr/index.php/software.html (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixun Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Chen, H., Su, Z. et al. Versatile surface detail editing via Laplacian coordinates. Vis Comput 27, 401–411 (2011). https://doi.org/10.1007/s00371-011-0558-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0558-y

Keywords

Navigation