Abstract
Multidimensional Visualization techniques are invaluable tools for analysis of structured and unstructured data with variable dimensionality. This paper introduces PEx-Image—Projection Explorer for Images—a tool aimed at supporting analysis of image collections. The tool supports a methodology that employs interactive visualizations to aid user-driven feature detection and classification tasks, thus offering improved analysis and exploration capabilities. The visual mappings employ similarity-based multidimensional projections and point placement to layout the data on a plane for visual exploration. In addition to its application to image databases, we also illustrate how the proposed approach can be successfully employed in simultaneous analysis of different data types, such as text and images, offering a common visual representation for data expressed in different modalities.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Jacob Goldberger, S.G., Greenspan, H.: Unsupervised image-set clustering using an information theoretic framework. IEEE Trans. Image Proc. 15(2), 449–458 (2006). doi:10.1109/TIP.2005.860593
Kim, K., Jung, K., Park, S., Kim, H.: Support vector machines for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1542–1550 (2002). doi:10.1109/TPAMI.2002.1046177
Venkatesh, Y., Raja, S.: On the classification of multispectral satellite images using the Multi-Layer Perceptron. Pattern Recognit. 36(9), 2161–2175 (2003). doi:10.1016/S0031-3203(03)00013-X
Paulovich, F.V., Oliveira, M.C.F., Minghim, R.: The projection explorer: A flexible tool for projection-based multidimensional visualization. In: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007), pp. 27–36. IEEE Computer Society, Washington DC (2007). doi:10.1109/SIBGRAPI.2007.39
Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square projection: a fast high-precision multidimensional projection technique and its application to document mapping. IEEE Trans. Vis. Comput. Graph. 14(3), 564–575 (2008). doi:10.1109/TVCG.2007.70443
Cuadros, A.M., Paulovich, F.V., Minhgim, R., Telles, G.P.: Point placement by phylogenetic trees and its application for visual analysis of document collections. In: IEEE Symposium Visual Analytics Science and Technology 2007 (VAST 2007), pp. 99–106. Sacramento, California, USA (2007). doi:10.1109/vast.2007.4389002
Heijs, A.: Requirements for coordinated multiple view visualization systems for industrial applications. In: Proceedings V International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007), pp. 76–79. IEEE Computer Society, Washington DC (2007). doi:10.1109/CMV.2007.19
Chen, C., Gagaudakis, G., Rosin, P.: Similarity-based image browsing. In: XVI IFIP World Computer Congress, International Conference on Intelligent Information Processing, pp. 206–213. Beijing, China (2000)
Schvaneveldt, R.W. (ed.): Pathfinder Associative Networks: Studies in Knowledge Organization. Ablex, Norwood (1990)
Fan, J., Gao, Y., Luo, H.: Hierarchical classification for automatic image annotation. In: Proceedings XXX ACM International Conference on Research and Development in Information Retrieval, pp. 111–118. ACM Press, New York (2007). doi:10.1145/1277741.1277763
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000). doi:10.1126/science.290.5500.2323
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000). doi:10.1126/science.290.5500.2319
Moghaddam, B., Tian, Q., Lesh, N., Shen, C., Huang, T.S.: Visualization and user-modeling for browsing personal photo-libraries. Int. J. Comput. Vis. 56(1–2), 109–130 (2004)
Yang, L.: Distance-preserving projection of high-dimensional data for nonlinear dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1243–1246 (2004). doi:10.1109/TPAMI.2004.66
Minghim, R., Paulovich, F.V., Lopes, A.A.: Content-based text mapping using multi-dimensional projections for exploration of document collections. In: Erbacher, R.F., Roberts, J.C., Gröhn, M.T., Borner, K. (eds.) Proceedings SPIE-IS&T Electronic Imaging, Visualization and Data Analysis 2006, vol. 6060, p. 60600S. SPIE, San Jose (2006). doi:10.1117/12.650880
Jain, A.K., Zongker, D.: Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 153–158 (1997). doi:10.1109/34.574797
Garson, G.D.: Interpreting neural net connection weights. AI Expert 6(4), 46–51 (1991)
Santos, D.P., Neto, J.E.S.B.: Feature selection with equalized salience measures and its application to segmentation. In: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007), pp. 253–262. IEEE Computer Society, Los Alamitos (2007). doi:10.1109/SIBGRAPI.2007.18
Castellano, G., Fanelli, A.M.: Variable selection using neural-network models. Neurocomputing 31(1–4), 1–13 (2000). doi:10.1016/S0925-2312(99)00146-0
Nath, R., Rajagopalan, B., Ryker, R.: Determining the saliency of input variables in neural network classifiers. Comput. Oper. Res. 24(8), 767–773 (1997). doi:10.1016/S0305-0548(96)00088-3
Eler, D.M., Paulovich, F.V., de Oliveira, M.C.F., Minghim, R.: Coordinated and multiple views for visualizing text collections. In: Proceedings XXII International Conference on Information Visualization (IV’08), pp. 246–251 (2008). doi:10.1109/IV.2008.39
Huang, K., Aviyente, S.: Rotation-invariant texture classification with ridgelet transform and Fourier transform. In: Proceedings of the ICIP, pp. 2141–2144. IEEE, New York (2006). doi:10.1109/ICIP.2006.312867
Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996). doi:10.1109/34.531803
Tuceryan, M., Jain, A.K.: Texture analysis. In: The Handbook of Pattern Recognition and Computer Vision, 2nd edn., pp. 207–248. World Scientific, Singapore (1998)
da Silva, L.A., Moreno, R.A., Furuie, S.S., Hernandez, E.D.M.: Medical image categorization based on wavelet transform and self-organizing map. In: Proceedings VII International Conference on Intelligent Systems Design and Applications (ISDA 2007), pp. 353–356. IEEE Computer Society, Washington DC (2007). doi:10.1109/ISDA.2007.100
Telles, G.P., Minghim, R., Paulovich, F.V.: Normalized compression distance for visual analysis of document collections. Comput. Graph. 31(3), 327–337 (2007). doi:10.1016/j.cag.2007.01.024
Philips, D.C.: The development of crystallographic enzymology. ASF 30, 11–28 (1970)
Pietal, M.J., Tuszynska, I., Bujnicki, J.M.: Protmap2d: visualization, comparison and analysis of 2d maps of protein structure. Bioinformatics 23(11), 1429–1430 (2007). doi:10.1093/bioinformatics/btm124
Altschul, S.F., Gish, W.M., Myers, E.W., Lipman, D.J.: A basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)
Cilibrasi, R., Vitányi, P.: Clustering by compression. IEEE Trans. Inf. Theory 51(4), 1546–1555 (2005). doi:10.1109/TIT.2005.844059
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
figuresAndAnnotations -371_2009_368_MOESM1_ESM.wmv (6.16MB)
imageDataSetExporation-371_2009_368_MOESM2_ESM.wmv (10.2MB)
medicalAnalysis-371_2009_368_MOESM3_ESM.wmv (4.56MB)
MLPclassificationAndFeaturesSelection-371_2009_368_MOESM4_ESM.wmv (7.31MB)
Rights and permissions
About this article
Cite this article
Eler, D.M., Nakazaki, M.Y., Paulovich, F.V. et al. Visual analysis of image collections. Vis Comput 25, 923–937 (2009). https://doi.org/10.1007/s00371-009-0368-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-009-0368-7