Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Regional Features and Seasonality of Land–Atmosphere Coupling over Eastern China

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Land–atmosphere coupling is a key process of the climate system, and various coupling mechanisms have been proposed before based on observational and numerical analyses. The impact of soil moisture (SM) on evapotranspiration (ET) and further surface temperature (ST) is an important aspect of such coupling. Using ERA-Interim data and CLM4.0 offline simulation results, this study further explores the relationships between SM/ST and ET to better understand the complex nature of the land–atmosphere coupling (i.e., spatial and seasonal variations) in eastern China, a typical monsoon area. It is found that two diagnostics of land–atmosphere coupling (i.e., SM–ET correlation and ST–ET correlation) are highly dependent on the climatology of SM and ST. By combining the SM–ET and ST–ET relationships, two “hot spots” of land–atmosphere coupling over eastern China are identified: Southwest China and North China. In Southwest China, ST is relatively high throughout the year, but SM is lowest in spring, resulting in a strong coupling in spring. However, in North China, SM is relatively low throughout the year, but ST is highest in summer, which leads to the strongest coupling in summer. Our results emphasize the dependence of land–atmosphere coupling on the seasonal evolution of climatic conditions and have implications for future studies related to land surface feedbacks.

摘 要

陆-气耦合是气候系统中的重要过程, 已经有大量基于观测和数值模拟的研究提出了各种耦合机制. 土壤湿度影响蒸散发进而引起地表温度异常是陆-气耦合研究中的重要组成部分. 利用ERA-Interim再分析资料和CLM4.0模拟结果, 本研究进一步探讨了土壤湿度/地表温度与蒸散发之间的关系, 以更好地理解中国东部地区陆-气耦合的复杂性质(即空间和季节变化). 本研究发现陆-气耦合的两个诊断量(即土壤湿度与蒸散发的相关系数和地表温度与蒸散发的相关系数)的变化主要依赖土壤湿度和地表温度的气候状态, 存在明显的空间变化和季节演变. 结合两个相关系数, 本研究确定了中国东部的两个陆-气耦合的关键区: 西南和华北地区. 在西南地区, 土壤湿润, 温度较高, 但在旱季的时候土壤湿度显著下降, 春季达到最低, 因此春季表现为较强的陆气耦合. 而在华北地区, 土壤湿度在年内维持在较低的水平, 仅在较为温暖的季节才有足够的能量将土壤中的水分蒸发至大气, 因此陆-气耦合强度随着温度的季节变化而发生改变, 夏季最强. 本文的研究结果强调了陆-气耦合对气候条件季节演变的依赖性, 为未来有关陆面过程反馈的研究提供一定的参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land surface reanalysis data set. Hydrology and Earth System Sciences, 19, 389–407, https://doi.org/10.5194/hess-19-389-2015.

    Article  Google Scholar 

  • Bellucci, A., and Coauthors, 2015: Advancements in decadal climate predictability: The role of nonoceanic drivers. Rev. Geophys., 53(2), 165–202, https://doi.org/10.1002/2014RG 000473.

    Article  Google Scholar 

  • Cai, W. J., and T. Cowan, 2008: Evidence of impacts from rising temperature on inflows to the Murray-Darling Basin. Geophys. Res. Lett., 35, L07701, https://doi.org/10.1029/2008GL 033390.

    Article  Google Scholar 

  • Chen, H. S., M. M. Xiong, and W. Y. Sha, 2010: Simulation of land surface processes over China and its validation Part I: Soil temperature. Scientia Meteorologica Sinica, 30(5), 621–630, https://doi.org/10.3969/j.issn.1009-0827.2010.05. 008. (in Chinese)

    Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi. org/10.1002/qj.828.

    Article  Google Scholar 

  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moistureclimate coupling. Geophys. Res. Lett., 38, L16702, https://doi. org/10.1029/2011GL048268.

    Article  Google Scholar 

  • Dirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker, 2009: Precipitation, recycling, and land memory: An integrated analysis. Journal of Hydrometeorology, 10, 278–288, https://doi.org/10.1175/2008JHM1016.1.

    Article  Google Scholar 

  • Douville, H., P. Viterbo, J.-F. Mahfouf, and A. C. M. Beljaars, 2000: Evaluation of the optimum interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon. Wea. Rev., 128, 1733–1756, https://doi.org/10.1175/1520-0493(2000)128<1733:EOTOIA>2.0.CO;2.

    Article  Google Scholar 

  • Gao, C. J., H. S. Chen, B. Xu, and G. Zeng, 2014: Possible relationships among South China Sea SSTA, soil moisture anomalies in southwest China and summer precipitation in eastern China. Journal of Tropical Meteorology, 20(3), 228–235, https://doi.org/10.16555/j.1006-8775.2014.03.005.

    Google Scholar 

  • Ge, M. L., and Z. M. Feng, 2009: Population distribution of China based on GIS: Classification of population densities and curve of population gravity centers. Acta Geographica Sinica, 64(2), 202–210, https://doi.org/10.3321/j.issn:0375-5444.2009.02.007. (in Chinese)

    Google Scholar 

  • Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nature Communications, 6, 6443, https://doi.org/10.1038/ncomms7443.

    Article  Google Scholar 

  • Guo, Q. Y., J. N. Cai, X. M. Shao, and W. Y. Sha, 2003: Interdecadal variability of East-Asian summer monsoon and its impact on the climate of China. Acta Geographica Sinica, 58(4), 569–576, https://doi.org/10.3321/j.issn:0375-5444.2003.04.011. (in Chinese)

    Google Scholar 

  • He, J. H., J. H. Ju, Z. P. Wen, J. M. Lü, and Q. H. Jin, 2007: A review of recent advances in research on Asian monsoon in China. Adv. Atmos. Sci., 24(6), 972–992, https://doi.org/10.1007/s00376-007-0972-2.

    Article  Google Scholar 

  • Hu, L. L., Y. L. Liu, Y. H. Ren, L. J. Yu, and C. Qu, 2015: Spatial change of population density boundary in mainland China in recent 80 years. Journal of Remote Sensing, 19(6), 928–934, https://doi.org/10.11834/jrs.20155016. (in Chinese)

    Google Scholar 

  • Hua, W. J., H. S. Chen, S. G. Zhu, S. L. Sun, M. Yu, and L. M. Zhou, 2013: Hotspots of the sensitivity of the land surface hydrological cycle to climate change. Chinese Science Bulletin, 58(30), 3682–3688, https://doi.org/10.1007/s11434-013-5846-7.

    Article  Google Scholar 

  • Jiang, J., D. B. Jiang, and Y. H. Lin, 2015: Monsoon area and precipitation over China for 1961–2009. Chinese Journal of Atmospheric Sciences, 39(4), 722–730, https://doi.org/10.3878/j.issn.1006-9895.1410.14195. (in Chinese)

    Google Scholar 

  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. Journal of Hydrometeorology, 2, 558–570, https://doi.org/10.1175/1525-7541(2001)002<0558: SMMICM>2.0.CO;2.

    Article  Google Scholar 

  • Koster, R. D., S. D. Schubert, and M. J. Suarez, 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 3331–3341, https://doi.org/10.1175/2008JCLI2718.1.

    Article  Google Scholar 

  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, https://doi.org/10.1126/science.1100217.

    Article  Google Scholar 

  • Koster, R. D., and Coauthors, 2006: GLACE: The global land atmosphere coupling experiment. Part I: Overview. Journal of Hydrometeorology, 7, 590–610, https://doi.org/10.1175/JHM510.1.

    Google Scholar 

  • Lai, X., J. Wen, S. X. Cen, H. Q. Song, H. Tian, X. K. Shi, Y. He, and X. Huang, 2014: Numerical simulation and evaluation study of soil moisture over China by using CLM4.0 model. Chinese J. Atmos. Sci., 38(3), 499–512, https://doi.org/10.3878/j.issn.1006-9895.1401.13194. (in Chinese)

    Google Scholar 

  • Li, M. X., Z. G. Ma, and G. Y. Niu, 2011: Modeling spatial and temporal variations in soil moisture in China. Chinese Science Bulletin, 56(17), 1809–1820, https://doi.org/10.1007/s11434-011-4493-0.

    Article  Google Scholar 

  • Liu, L., R. H. Zhang, and Z. Y. Zuo, 2014: Intercomparison of spring soil moisture among multiple reanalysis data sets over eastern China. J. Geophys. Res. Atmos., 119, 54–64, https://doi.org/10.1002/2013JD020940.

    Article  Google Scholar 

  • Ma, Z. G., and C. B. Fu, 2005: Decadal variations of arid and semi-arid boundary in China. Chinese Journal of Geophysics, 48(3), 519–525, https://doi.org/10.3321/j.issn:0001-5733.2005.03.008. (in Chinese)

    Google Scholar 

  • Mahfouf, J.-F., P. Viterbo, H. Douville, A. C. M. Beljaars, and S. Saarinen, 2000: A revised land-surface analysis scheme in the integrated forecasting system. ECMWF Newsletter, 88, 8–13.

    Google Scholar 

  • Mei, R., and G. L. Wang, 2012: Summer land-atmosphere coupling strength in the United States: Comparison among observations, reanalysis data, and numerical models. Journal of Hydrometeorology, 13, 1010–1022, https://doi.org/10.1175/JHM-D-11-075.1.

    Article  Google Scholar 

  • Meng, L., D. Long, S. M. Quiring, and Y. J. Shen, 2014: Statistical analysis of the relationship between spring soil moisture and summer precipitation in East China. International Journal of Climatology, 34(5), 1511–1523, https://doi.org/10.1002/joc.3780.

    Article  Google Scholar 

  • Nicholls, N., 2004: The changing nature of Australian droughts. Climatic Change, 63(3), 323–336, https://doi.org/10.1023/B:CLIM.0000018515.46344.6d.

    Article  Google Scholar 

  • Oki, T., and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845.

    Article  Google Scholar 

  • Ruscica, R. C., A. A. Sörensson, and C. G. Menéndez, 2014: Hydrological links in Southeastern South America: Soil moisture memory and coupling within a hot spot. International Journal of Climatology, 34, 3641–3653, https://doi.org/10.1002/joc.3930.

    Article  Google Scholar 

  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006a: Land atmosphere coupling and climate change in Europe. Nature, 443, 205–209, https://doi.org/10.1038/nature05095.

    Article  Google Scholar 

  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    Article  Google Scholar 

  • Seneviratne, S. I., and Coauthors, 2006b: Soil moisture memory in AGCM simulations: Analysis of Global Land-Atmosphere Coupling Experiment (GLACE) Data. Journal of Hydrometeorology, 7, 1090–1112, https://doi.org/10.1175/JHM533.1.

    Article  Google Scholar 

  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year-high-resolution global dataset of meteorological forcing for land surface modeling. J. Climate, 19(13), 3088–3111, https://doi.org/10.1175/JCLI3790.1.

    Article  Google Scholar 

  • Spennemann, P. C., and A. C. Saulo, 2015: An estimation of the land-atmosphere coupling strength in South America using the Global Land Data Assimilation System. International Journal of Climatology, 35, 4151–4166, https://doi.org/10.1002/joc.4274.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90(3), 311–323, https://doi.org/10.1175/2008BAMS2634.1.

    Article  Google Scholar 

  • Tuttle, S., and G. Salvucci, 2016: Empirical evidence of contrasting soil moisture-precipitation feedbacks across the United States. Science, 352(6287), 825–828, https://doi.org/10.1126/science.aaa7185.

    Article  Google Scholar 

  • van den Hurk, B. J. J. M., P. Viterbo, A. C. M. Beljaars, and A. K. Betts, 2000: Offline validation of the ERA40 surface scheme. ECMWF Technical Memorandum No.295, 1–42.

    Google Scholar 

  • Wei, J. F., and P. A. Dirmeyer, 2012: Dissecting soil moistureprecipitation coupling. Geophys. Res. Lett., 39, L19711, https://doi.org/10.1029/2012GL053038.

    Article  Google Scholar 

  • Wei, J. F., P. A. Dirmeyer, and Z. C. Guo, 2008: Sensitivities of soil wetness simulation to uncertainties in precipitation and radiation. Geophys. Res. Lett., 35, L15703, https://doi.org/10.1029/2008GL034494.

    Article  Google Scholar 

  • Wei, J. F., P. A. Dirmeyer, M. G. Bosilovich, and R. G. Wu, 2012: Water vapor sources for Yangtze River Valley rainfall: Climatology, variability, and implications for rainfall forecasting. J. Geophys. Res., 117, D05126, https://doi.org/10.1029/2011JD016902.

    Google Scholar 

  • Wu, L. Y., and J. Y. Zhang, 2013: Asymmetric effects of soil moisture on mean daily maximum and minimum temperatures over eastern China. Meteor. Atmos. Phys., 122, 199–213, https://doi.org/10.1007/s00703-013-0284-2.

    Article  Google Scholar 

  • Wu, S. H., Y. H. Yin, D. Zheng, and Q. Y. Yang, 2005: Aridity/humidity status of land surface in China during the last three decades. Science in China Series D: Earth Sciences, 48(9), 1510–1518, https://doi.org/10.1360/04yd0009.

    Article  Google Scholar 

  • Wu, W. R., and R. E. Dickinson, 2004: Time scales of layered soil moisture memory in the context of land-atmosphere interaction. J. Climate, 17, 2752–2764, https://doi.org/10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2.

    Article  Google Scholar 

  • Xiong, M. M., H. S. Chen, and M. Yu, 2011: Simulation of land surface processes over China and its validation. Part II: Soil moisture. Scientia Meteorologica Sinica, 31(1), 1–10, https://doi.org/10.3969/j.issn.1009-0827.2011.01.001. (in Chinese)

    Google Scholar 

  • Yin, D. Q., M. L. Roderick, G. Leech, F. B. Sun, and Y. F. Huang, 2014a: The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys. Res. Lett., 41, 7891–7897, https://doi.org/10.1002/2014 GL062039.

    Article  Google Scholar 

  • Yin, J. F., X. W. Zhan, Y. F. Zheng, J. C. Liu, C. R. Hain, and L. Fang, 2014b: Impact of quality control of satellite soil moisture data on their assimilation into land surface model. Geophys. Res. Lett., 41(20), 7159–7166, https://doi.org/10.1002/2014gl060659.

    Article  Google Scholar 

  • Yin, J. F., and Coauthors, 2015: An assessment of impacts of land-cover changes on root-zone soil moisture. Int. J. Remote Sens., 36(24), 6116–6134, https://doi.org/10.1080/01431161. 2015.1111539.

    Article  Google Scholar 

  • Zhang, C. J., Y. M. Liao, J. Q. Duan, Y. L. Song, D. P. Huang, and S. Wang, 2016: The progresses of dry-wet climate divisional research in China. Climate Change Research, 12(4), 261–267, https://doi.org/10.12006/j.issn.1673-1719.2015.191. (in Chinese)

    Google Scholar 

  • Zhang, J. Y., and W. J. Dong, 2010: Soil moisture influence on summertime surface air temperature over East Asia. Theor. Appl. Climatol., 100, 221–226, https://doi.org/10.1007/s00704-009-0236-4.

    Article  Google Scholar 

  • Zhang, J. Y., W. C. Wang, and J. F. Wei, 2008a: Assessing land atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res., 113, D17119, https://doi.org/10.1029/2008JD009807.

    Article  Google Scholar 

  • Zhang, J. Y., W. C. Wang, and L. R. Leung, 2008b: Contribution of land-atmosphere coupling to summer climate variability over the contiguous United States. J. Geophys. Res., 113, D22109, https://doi.org/10.1029/2008JD010136.

    Article  Google Scholar 

  • Zhang, J. Y., W. C. Wang, and L. Y. Wu, 2009: Land-atmosphere coupling and diurnal temperature range over the contiguous United States. Geophys. Res. Lett., 36, L06706, https://doi.org/10.1029/2009GL037505.

    Google Scholar 

  • Zhang, J. Y., L. Y. Wu, and W. J. Dong, 2011: Land-atmosphere coupling and summer climate variability over East Asia. J. Geophys. Res., 116, D05117, https://doi.org/10.1029/2010 JD014714.

    Article  Google Scholar 

  • Zhang, R. H., and Z. Y. Zuo, 2011: Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J. Climate, 24, 3309–3322, https://doi.org/10.1175/2011JCLI4084.1.

    Article  Google Scholar 

  • Zhang, W. J., T. J. Zhou, and R. C. Yu, 2008c: Spatial distribution and temporal variation of soil moisture over China Part I: Multi-data inter-comparison. Chinese Journal of Atmospheric Sciences, 32, 581–597, https://doi.org/10.3878/j.issn.1006-9895.2008.03.15. (in Chinese)

    Google Scholar 

  • Zhang, W. L., J. Y. Zhang, and G. Z. Fan, 2014: Dominant modes of dry- and wet-season precipitation in southwestern China. Chinese Journal of Atmospheric Sciences, 38(3), 590–602, https://doi.org/10.3878/j.issn.1006-9895.2013.13156. (in Chinese)

    Google Scholar 

  • Zhu, S. G., H. S. Chen, and J. Zhou, 2013: Simulations of global land surface conditions in recent 50 years with three versions of NCAR Community Land Models and their comparative analysis. Transactions of Atmospheric Science, 36(4), 434–446, https://doi.org/10.13878/j.cnki.dqkxxb.2013.04.007. (in Chinese)

    Google Scholar 

  • Zittis, G., P. Hadjinicolaou, and J. Lelieveld, 2013: Land-Atmosphere coupling: The feedback of soil moisture into surface temperature in Eastern Mediterranean and Middle East. Advances in Meteorology, Climatology and Atmospheric Physics, C. G. Helmis, and P. T. Nastos, Eds., Springer, 833–839, https://doi.org/10.1007/978-3-642-29172-2 117.

    Chapter  Google Scholar 

  • Zuo, Z. Y., and R. H. Zhang, 2007: The spring soil moisture and the summer rainfall in eastern China. Chinese Science Bulletin, 52, 3310–3312, https://doi.org/10.1007/s11434-007-0442-3.

    Article  Google Scholar 

  • Zuo, Z. Y., and R. H. Zhang, 2009: Temporal and spatial features of the soil moisture in boreal spring in eastern China. Science in China Series D: Earth Sciences, 52(2), 269–278, https://doi.org/10.1007/s11430-009-0011-5.

    Article  Google Scholar 

  • Zuo, Z. Y., and R. H. Zhang, 2016: Influence of soil moisture in Eastern China on the East Asian summer monsoon. Adv. Atmos. Sci., 33(2), 151–163, https://doi.org/10.1007/s00376-015-5024-8.

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41625019 and 41605042), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151525), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haishan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Chen, H., Sun, S. et al. Regional Features and Seasonality of Land–Atmosphere Coupling over Eastern China. Adv. Atmos. Sci. 35, 689–701 (2018). https://doi.org/10.1007/s00376-017-7140-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7140-0

Key words

关键词

Navigation