Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Evaluating the dependence of vegetation on climate in an improved dynamic global vegetation model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The capability of an improved Dynamic Global Vegetation Model (DGVM) in reproducing the impact of climate on the terrestrial ecosystem is evaluated. The new model incorporates the Community Land Model-DGVM (CLM3.0-DGVM) with a submodel for temperate and boreal shrubs, as well as other revisions such as the “two-leaf” scheme for photosynthesis and the definition of fractional coverage of plant functional types (PFTs). Results show that the revised model may correctly reproduce the global distribution of temperate and boreal shrubs, and improves the model performance with more realistic distribution of different vegetation types. The revised model also correctly reproduces the zonal distributions of vegetation types. In reproducing the dependence of the vegetation distribution on climate conditions, the model shows that the dominant regions for trees, grasses, shrubs, and bare soil are clearly separated by a climate index derived from mean annual precipitation and temperature, in good agreement with the CLM4 surface data. The dominant plant functional type mapping to a two dimensional parameter space of mean annual temperature and precipitation also qualitatively agrees with the results from observations and theoretical ecology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archibold, O. W., 1995: Ecology of the World Vegetation. Chapman & Hall, 510pp.

  • Bahre, C. J., 1995: Human impacts on the grasslands of southeastern Arizona. The Desert Grassland, M. P. McClaran and T. R. van Devender, Eds., The University of Arizona Press, Tucson, 230–264.

    Google Scholar 

  • Bailey, R. G., 1998: Ecoregions: The Ecosystem Geography of the Oceans and Continents. Springer-Verlag, New York, 176pp.

    Google Scholar 

  • Bonan, G. B., 1996: A Land Surface Model (LSM Version 1.0) for ecological, hydrological, and atmospheric studies. NCAR Tech. Note NCAR/TN-417+STR. National Center for Atmospheric Research, Boulder, 150pp.

    Google Scholar 

  • Bonan, G. B., and S. Levis, 2006: Evaluating aspects of the Community Land and Atmosphere Models (CLM3 and CAM3) using a dynamic global vegetation model. J. Climate, 19, 2290–2301.

    Article  Google Scholar 

  • Chapin, F. S. III, P. A. Matson, and H. A. Mooney, 2002: Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York, Berlin, Heidelberg, 436pp.

    Google Scholar 

  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Technical Note NCAR/TN-464+STR, National Center for Atmospheric Research, Boulder, 214pp.

    Google Scholar 

  • Cox, P. M., 2001: Description of the TRIFFID Dynamic Global Vegetation Model. Hadley Centre Tech. Note 24, Hadley Centre, Bracknell, U. K., 16pp.

    Google Scholar 

  • Dai, Y., and Coauthors, 2003: The Common Land Model (CLM). Bull. Amer. Meteor. Soc., 84, 1013–1023.

    Article  Google Scholar 

  • Dai, Y., R. E. Dickinson, and Y.-P. Wang, 2004: A twobigleaf model for canopy temperature, photosynthesis and stomatal conductance. J. Climate, 17, 2281–2299.

    Article  Google Scholar 

  • Fang, J. Y., S. L. Piao, Z. Y. Tang, C. H. Peng, and J. Wei, 2001: Interannual variability in net primary production and precipitation. Science, 293, U1–U2

    Article  Google Scholar 

  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10, 603–628.

    Article  Google Scholar 

  • Friend, A. D., A. K. Stevens, R. G. Knox, and M. G. R. Cannell, 1997: A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological Modelling, 95, 249–287.

    Article  Google Scholar 

  • Hughes, J. K., P. J. Valdes, and R. A. Betts, 2004: Dynamical properties of the TRIFFID dynamic global vegetation model. Hadley Centre Tech. Note 56, Hadley Centre, Bracknell, U.K., 23pp.

    Google Scholar 

  • IPCC, 2007: IPCC Fourth Assessment Report: Climate Change 2007: Synthesis Report. IPCC, Geneva, 104pp.

    Google Scholar 

  • Knapp, A. K., and M. D. Smith, 2001: Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481–484

    Article  Google Scholar 

  • Lawrence, P. J., and T. N. Chase, 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res., 112, G01023, doi: 10.1029/2006JG000168.

    Article  Google Scholar 

  • Levis, S., G. B., Bonan, M. Vertenstein, and K. W. Oleson, 2004: The Community Land Model’s dynamic global vegetation model (CLM-DGVM): Technical description and user’s guide. NCAR Tech. Note TN-459+IA, National Center for Atmospheric Research, Boulder, 50pp.

    Google Scholar 

  • Li, Z., and M. Kafatos, 2000: Interannual variability of vegetation in the United States and its relation to El Niño/Southern Oscillation. Remote Sens. Environ., 71, 239–247.

    Article  Google Scholar 

  • Lugo, A. E., S. L. Brown, R. Dodson, T. S. Smith, and H. H. Shugart, 1999: The Holdridge Life Zones of the conterminous United States in relation to ecosystem mapping. Journal of Biogeography, 26, 1025–1038.

    Article  Google Scholar 

  • Nemani, R. R., and Coauthors, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560–1563.

    Article  Google Scholar 

  • Notaro, M., 2008: Response of the mean global vegetation distribution to interannual climate variability. Climate Dyn., 30, 845–854

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-461+STR, National Center for Atmospheric Research, Boulder, 174pp.

    Google Scholar 

  • Oleson, K. W., G. B. Bonan, C. Schaaf, F. Gao, Y. Jin, and A. H. Strahler, 2003: Assessment of global climate model land surface albedo using MODIS data. Geophys. Res. Lett., 30, 1443, doi: 10.1029/2002GL016749.

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2007: CLM3.5 Documentation. National Center for Atmospheric Research, Boulder, 34pp. [Available online at http://www.cgd.ucar.edu/tss/clm/distribution/clm3.5/clm35documentation.pdf]

    Google Scholar 

  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644.

    Article  Google Scholar 

  • Potter, C. S., and S. A. Klooster, 1999: Detecting a terrestrial biosphere sink for carbon dioxide: Interannual ecosystem modeling for the mid-1980s. Climatic Change, 42, 489–503.

    Article  Google Scholar 

  • Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. Journal of Hydrometeorology, 7, 953–975.

    Article  Google Scholar 

  • Ramankutty, N., and J. A. Foley, 1999: Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles, 13, 997–1027.

    Article  Google Scholar 

  • Ramankutty, N., A. T. Evan, C. Monfreda, and J. A. Foley, 2008: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 22, GB1003, doi: 10.1029/2007GB002952

    Article  Google Scholar 

  • Ricklefs, R. E., 2008: The Economy of Nature. 6th ed., W H Freeman & Co., 550pp.

  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B. Walker, 2001: Catastrophic shifts in ecosystems. Nature, 413, 591–596.

    Article  Google Scholar 

  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161–185.

    Article  Google Scholar 

  • Thornton, P., and N. E. Zimmermann, 2007: An improved canopy integration scheme for a land surface model with prognostic canopy structure. J. Climate, 20, 3902–3923, doi: 10.1175/JCLI4222.1

    Article  Google Scholar 

  • Tian, Y., and Coauthors, 2004: Land boundary conditions from MODIS data and consequences for the albedo of a climate model. Geophys. Res. Lett., 31, L05504, doi: 10.1029/2003GL019104.

    Article  Google Scholar 

  • van Auken, O. W., 2000: Shrub invasions of North American semiarid grasslands. Annual Review of Ecology and Systematics, 31, 197–215.

    Article  Google Scholar 

  • Vertenstein, M., K. Oleson, S. Levis, and P. Thornton, 2003: CLM2.1 User’s Guide. National Center for Atmospheric Research, Boulder, 35pp. [Available online at http://www.cgd.ucar.edu/tss/clm/distribution/clm2.1/index.html]

    Google Scholar 

  • Vertenstein, M., T. Craig, T. Henderson, S. Murphy, G. R. Carr Jr., and N. Norton, 2004: CCSM3.0 User’s Guide. National Center for Atmospheric Research, Boulder, 70pp. [Available online at http://www.ccsm.ucar.edu/models/ccsm3.0]

    Google Scholar 

  • White, M. A., P. E. Thornton, S. W. Running, and R. R. Nemani, 2000: Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls. Earth Interactions, 4, 1–85.

    Article  Google Scholar 

  • Whittaker, R. H., 1975: Communities and Ecosystems. 2nd ed., Macmillan, 352pp.

  • Woodward, F. I., M. R. Lomas, and S. E. Lee, 2000: Predicting the future production and distribution of global terrestrial vegetation. Terrestrial Global Productivity, Roy et al., Eds, Academic Press, San Diego, 519–539.

    Google Scholar 

  • Wu, J.-H., K. Zhang, Y. Jiang, M.-Y. Kang, and Y. Qiu, 2004: Phytogeography. 4th ed., Higher Education Press, Beijing. 382pp. (in Chinese)

    Google Scholar 

  • Zeng, Q.-C., and Coauthors, 2008a: Research on the earth system dynamic model and some related numerical simulations. Chinese J. Atmos. Sci., 32, 653–690. (in Chinese)

    Google Scholar 

  • Zeng, X. D., X. Zeng, and M. Barlage, 2008b: Growing temperate shrubs over arid and semiarid regions in the Community Land Model — Dynamic Global Vegetation Model (CLM-DGVM). Global Biogeochemical Cycles, 22, GB3003, doi: 10.1029/2007GB003014.

    Article  Google Scholar 

  • Zhang, H. Q., Y. H. Li, and X. J. Gao, 2009: Potential impacts of land-use on climate variability and extremes. Adv. Atmos. Sci., 26, 840–854, doi: 10.1007/s00376-009-8047-1.

    Article  Google Scholar 

  • Zhi, H., P. X. Wang, L. Dam, Y. Q. Yu, Y. F. Xu, and W. P. Zheng, 2009: Climate-vegetation interannual variability in a coupled atmosphere-ocean-land model. Adv. Atmos. Sci., 26, 599–612, doi: 10.1007/s00376-009-0599-6.

    Article  Google Scholar 

  • Zhou, D. W., G. Z. Fan, R. H. Huang, Z. F. Fang, Y. Q. Liu, and H. Q. Li, 2007: Interannual variability of the normalized difference vegetation index on the Tibetan Plateau and its relationship with climate change. Adv. Atmos. Sci., 24, 474–484, doi: 10.1007/s00376-007-0474-2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zeng  (曾晓东).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X. Evaluating the dependence of vegetation on climate in an improved dynamic global vegetation model. Adv. Atmos. Sci. 27, 977–991 (2010). https://doi.org/10.1007/s00376-009-9186-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-9186-0

Key words

Navigation