Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Peridynamic modeling and simulation of thermo-mechanical fracture in inhomogeneous ice

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

It is challenging to build a physically accurate sea ice model, which is highly sensitive to temperature and many uncertain factors, such as its nonuniform and inhomogeneous microstructure. In this work, we adopt a peridynamics approach to develop an inhomogeneous sea ice model and applied it to simulate crack propagation in a thermo-mechanical field of ice sheet. To develop an inhomogeneous ice model, we treat the critical stretch of inhomogeneous ice material as a random variable that obeys the Weibull distribution. A coupled thermo-mechanical peridynamics approach is adopted to simulate ice crack propagation, and a key component of this approach is adopted the temperature-dependent critical stretch. Thus, we can model the temperature-dependent crack propagation. Moreover, the wing crack growth problem is simulated to demonstrate the accuracy of the proposed inhomogeneous peridynamics ice model, whose simulation results agree well with the experimental data. Furthermore, the influence of the initial crack length, temperature, and bubbles in ice were also studied to understand the microcrack formation mechanism in ice. The results of this work show that the proposed peridynamic ice model not only provides an efficient tool to simulate the complex deformation pattern in ice failure process in a coupled thermo-mechanical field, but also reveals the mechanical mechanism of fracture in ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Abbreviations

\({{{\varvec{\xi }}}_{\text {AB}}}\) :

The bond vector of material point \({{\mathbf {x}}_{\text {A}}}\) and \({{\mathbf {x}}_{\text {B}}}\) in reference configuration

\({{{\varvec{\eta }}}_{\text {AB}}}\) :

The relative displacement vector of material point \({{\mathbf {x}}_{\text {A}}}\) and \({{\mathbf {x}}_{\text {B}}}\) in current configuration

\({{c}_{v}}\) :

The specific heat capacity

\({{h}_{s}}\) :

The heat generate rate

\(\varTheta ({{\mathbf {x}}_{\text {A}}},t)\) :

The temperature at material point \({{\mathbf {x}}_{\text {A}}}\)

\({{\theta }_{\text {AB}}}\) :

The temperature difference between material point \({{\mathbf {x}}_{\text {A}}}\) and \({{\mathbf {x}}_{\text {B}}}\)

\({{H}_{{{x}_{\text {A}}}}}\) :

The horizon of particle \({{\mathbf {x}}_{\text {A}}}\)

\(\mathbf {f}({\varvec{\xi }},{\varvec{\eta }},t)\) :

The body force density function

\({{f}_{h}}\) :

The heat flow density function

\({{\mu }_{h}}\) :

The bond history function

\({{\phi }_{h}}\) :

The failure function index

s :

The bond stretch

\({s}_{0}^{{}}\) :

The critical bond stretch

c :

The micro-modulus

\({{f}_{h}}({{\varTheta }_{\text {B}}}-{{\varTheta }_{\text {A}}},{{\mathbf {x}}_{\text {B}}}-{{\mathbf {x}}_{\text {A}}},t)\) :

The thermal bond force density

\(\kappa ({{\mathbf {x}}_{\text {A}}},{{\mathbf {x}}_{\text {B}}})\) :

The micro-conductivity of the thermal bond

\(K({{\mathbf {x}}_{\text {A}}},{{\mathbf {x}}_{\text {B}}})\) :

The thermal conductivity of the material

\({{G}_{0}}\) :

The energy release rate

\({{K}_{I}}\) :

The fracture toughness

\({s}_{{}}^{\text {TH}}\) :

Thermo-mechanical bond stretch

\({s}_{0}^{\text {TH}}\) :

Thermo-mechanical bond critical stretch

\({s}_{i}^{\text {TH}}\) :

The critical stretch variable

\(\overline{{s}_{i}}^{\text {TH}}\) :

The average critical stretch

m :

The shape parameter

\(f\left( {s}_{i}^{\text {TH}},\overline{{s}_{i}}^{\text {TH}},m\right)\) :

The probability density distribution function

\(F\left( {s}_{i}^{\text {TH}},\overline{{s}_{i}}^{\text {TH}},m\right)\) :

The probability distribution function

p :

The porosity of ice

References

  1. Bergel G, Li S (2016) The total and updated Lagrangian formulation of state-based peridynamics. Comput Mech 58:351–370

    MathSciNet  MATH  Google Scholar 

  2. Chen W, Gu X, Zhang Q, Xia X (2021) A refined thermo-mechanical fully coupled peridynamics with application to concrete cracking. Eng Fract Mech 242:107463

    Google Scholar 

  3. Chu D, Li X, Liu Z (2017) Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling. Int J Fract 208(1):115–130

    Google Scholar 

  4. Cole D (2001) The microstructure of ice and its influence on mechanical properties. Eng Fract Mech 68(17–18):1797–1822

    Google Scholar 

  5. Cui P, Zhang AM, Wang S, Khoo B (2018) Ice breaking by a collapsing bubble. J Fluid Mech 841:287–309

    MATH  Google Scholar 

  6. Cui P, Zhang AM, Wang SP (2021) Shock wave emission and ice breaking effect of multiple interacting bubbles. Ocean Eng 234:109175

    Google Scholar 

  7. Cui P, Zhang AM, Wang SP, Liu YL (2020) Experimental study on interaction, shock wave emission and ice breaking of two collapsing bubbles. J Fluid Mech 897:A25

    Google Scholar 

  8. D’Antuono P, Morandini M (2017) Thermal shock response via weakly coupled peridynamic thermo-mechanics. Int J Solids Struct 129:74–89

    Google Scholar 

  9. Dempsey J (1991) The fracture toughness of ice. Ice-structure interaction. Springer, Berlin, pp 109–145

    Google Scholar 

  10. Dutta PK, Cole DM, Schulson EM, Sodhi DS (2003) Fracture study of ice under high strain rate loading. In: The thirteenth international offshore and polar engineering conference, OnePetro

  11. Gao Y, Oterkus S (2021) Coupled thermo-fluid-mechanical peridynamic model for analysing composite under fire scenarios. Compos Struct 255:113006

    Google Scholar 

  12. Haynes FD (1978) Effect of temperature on the strength of snow-ice, vol 78. The Laboratory

  13. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9(4):815–846

    Google Scholar 

  14. Hooke RL, Hudleston PJ (1980) Ice fabrics in a vertical flow plane, Barnes ice cap, Canada. J Glaciol 25(92):195–214

    Google Scholar 

  15. Hunke E, Dukowicz J (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27(9):1849–1867

    Google Scholar 

  16. Ji SY, Shen H, Wang Z, Shen H, Yue Q (2005) A viscoelastic-plastic constitutive model with Mohr-coulomb yielding criterion for sea ice dynamics. Acta Oceanol Sin Engl Ed 24(4):54

    Google Scholar 

  17. Jones L, Vandeperre L, Haynes T, Wenman M (2020) Modelling of Weibull distributions in brittle solids using 2-dimensional peridynamics. Proc Struct Integr 28:1856–1874

    Google Scholar 

  18. Jones L, Vandeperre L, Haynes T, Wenman M (2020) Theory and application of Weibull distributions to 1D peridynamics for brittle solids. Comput Methods Appl Mech Eng 363:112903

    MathSciNet  MATH  Google Scholar 

  19. Kan XY, Zhang AM, Yan J, Wu WB, Liu YL (2020) Numerical investigation of ice breaking by a high-pressure bubble based on a coupled BEM-PD model. J Fluids Struct 96:103016

    Google Scholar 

  20. Kilic B, Madenci E (2010) An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theor Appl Fract Mech 53(3):194–204

    Google Scholar 

  21. Lee R, Schulson E (1988) The strength and ductility of ice under tension. ASME J Offshore Mech Arct Eng 110(2):187–191

    Google Scholar 

  22. Li F, Kõrgesaar M, Kujala P, Goerlandt F (2020) Finite element based meta-modeling of ship-ice interaction at shoulder and midship areas for ship performance simulation. Mar Struct 71:102736

    Google Scholar 

  23. Li S, Simonsen C (2005) Meshfree simulations of ductile crack propagations. Int J Comput Methods Eng Sci Mech 6(1):1–19

    Google Scholar 

  24. Li Y (2019) Research on ice mechanical performance parameters based on ultrasonic. Taiyuan University of Technology, pp 109–145

  25. Liu R, Xue Y, Lu X, Cheng W (2018) Simulation of ship navigation in ice rubble based on peridynamics. Ocean Eng 148:286–298

    Google Scholar 

  26. Liu R, Yan J, Li S (2020) Modeling and simulation of ice-water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics. Comput Part Mech 7(2):241–255

    Google Scholar 

  27. Lu W, Li M, Vazic B, Oterkus S, Oterkus E, Wang Q (2020) Peridynamic modelling of fracture in polycrystalline ice. J Mech 36(2):223–234

    Google Scholar 

  28. Madenci E, DM, Gu X (2019) Peridynamic least squares minimization. Comput Methods Appl Mech Eng 348:846–874

    MathSciNet  MATH  Google Scholar 

  29. Madenci E, Barut A, Dorduncu M (2019) Peridynamic differential operator for numerical analysis. Springer International Publishing, Berlin

    MATH  Google Scholar 

  30. Madenci E, Oterkus E (2014) Peridynamic theory. Peridynamic theory and its applications. Springer, Berlin, pp 19–43

    MATH  Google Scholar 

  31. Mulmule S, Dempsey J (2000) LEFM size requirements for the fracture testing of sea ice. Int J Fract 102(1):85–98

    Google Scholar 

  32. Oterkus S, Madenci E (2017) Peridynamic modeling of fuel pellet cracking. Eng Fract Mech 176:23–37

    Google Scholar 

  33. Pan W, Tartakovsky AM, Monaghan J (2012) A smoothed-particle hydrodynamics model for ice-sheet and ice-shelf dynamics. J Glaciol 58(208):216–222

    MATH  Google Scholar 

  34. Peng Y, Zhang A, Ming F (2018) A thick shell model based on reproducing kernel particle method and its application in geometrically nonlinear analysis. Comput Mech 62(3):309–321

    MathSciNet  MATH  Google Scholar 

  35. Peng YX, Zhang AM, Ming FR (2020) A 3D meshfree crack propagation algorithm for the dynamic fracture in arbitrary curved shell. Comput Methods Appl Mech Eng 367:113139

    MathSciNet  MATH  Google Scholar 

  36. Peng YX, Zhang AM, Ming FR (2021) Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM. Ocean Eng 222:108576

    Google Scholar 

  37. Peng YX, Zhang AM, Wang SP (2021) Coupling of WCSPH and RKPM for the simulation of incompressible fluid-structure interactions. J Fluids Struct 102:103254

    Google Scholar 

  38. Petrenko V, Whitworth R (1999) Physics of ice. OUP Oxford, Oxford

    Google Scholar 

  39. Petrovic J (2003) Review mechanical properties of ice and snow. J Mater Sci 38(1):1–6

    MathSciNet  Google Scholar 

  40. Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196(29–30):2777–2799

    MathSciNet  MATH  Google Scholar 

  41. Rabczuk T, Ren H (2017) A peridynamics formulation for quasi-static fracture and contact in rock. Eng Geol 225:42–48

    Google Scholar 

  42. Rabczuk T, Ren H, Zhuang X (2019) A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Comput Mater Contin 59(1):31–55

    Google Scholar 

  43. Ren B, Li S (2010) Meshfree simulations of plugging failures in high-speed impacts. Comput Struct 88(15–16):909–923

    Google Scholar 

  44. Ren H, Zhuang X, Anitescu C, Rabczuk T (2019) An explicit phase field method for brittle dynamic fracture. Comput Struct 217:45–56

    Google Scholar 

  45. Ren H, Zhuang X, Rabczuk T (2016) A new peridynamic formulation with shear deformation for elastic solid. J Micromechanics Mol Phys 1(02):1650009

    Google Scholar 

  46. Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782

    MathSciNet  MATH  Google Scholar 

  47. Ren H, Zhuang X, Rabczuk T (2020) A higher order nonlocal operator method for solving partial differential equations. Comput Methods Appl Mech Eng 367:113132

    MathSciNet  MATH  Google Scholar 

  48. Ren H, Zhuang X, Rabczuk T, Zhu H (2019) Dual-support smoothed particle hydrodynamics in solid: variational principle and implicit formulation. Eng Anal Bound Elem 108:15–29

    MathSciNet  MATH  Google Scholar 

  49. Schulson E (2001) Brittle failure of ice. Eng Fract Mech 68(17–18):1839–1887

    Google Scholar 

  50. Schulson E, Gratz E (1999) The brittle compressive failure of orthotropic ice under triaxial loading. Acta Mater 47(3):745–755

    Google Scholar 

  51. Schulson E, Hoxie S, Nixon W (1989) The tensile strength of cracked ice. Philos Mag A 59(2):303–311

    Google Scholar 

  52. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    MathSciNet  MATH  Google Scholar 

  53. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    MathSciNet  MATH  Google Scholar 

  54. Song Y, Li S, Zhang S (2021) Peridynamic modeling and simulation of thermo-mechanical de-icing process with modified ice failure criterion. Def Technol 17(1):15–35

    Google Scholar 

  55. Song Y, Liu R, Li S, Kang Z, Zhang F (2020) Peridynamic modeling and simulation of coupled thermomechanical removal of ice from frozen structures. Meccanica 55(4):961–976

    MathSciNet  Google Scholar 

  56. Song Y, Yan J, Li S, Kang Z (2019) Peridynamic modeling and simulation of ice craters by impact. Comput Model Eng Sci 121(2):465–492

    Google Scholar 

  57. Sun P, Colagrossi A, Marrone S, Zhang A (2016) Detection of Lagrangian coherent structures in the SPH framework. Comput Methods Appl Mech Eng 305:849–868

    MathSciNet  MATH  Google Scholar 

  58. Sun P, Ming F, Zhang A (2015) Numerical simulation of interactions between free surface and rigid body using a robust SPH method. Ocean Eng 98:32–49

    Google Scholar 

  59. Timco G, Weeks W (2010) A review of the engineering properties of sea ice. Cold Reg Sci Technol 60(2):107–129

    Google Scholar 

  60. Wang P, Meng Z, Zhang AM, Ming FR, Sun PN (2019) Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 357:112580

    MathSciNet  MATH  Google Scholar 

  61. Wang P, Zhang AM, Ming F, Sun P, Cheng H (2019) A novel non-reflecting boundary condition for fluid dynamics solved by smoothed particle hydrodynamics. J Fluid Mech 860:81–114

    MathSciNet  MATH  Google Scholar 

  62. Wang Q, Wang Y, Zan Y, Lu W, Bai X, Guo J (2018) Peridynamics simulation of the fragmentation of ice cover by blast loads of an underwater explosion. J Mar Sci Technol 23(1):52–66

    Google Scholar 

  63. Wang Y, Zhou X, Kou M (2018) A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks. Int J Fract 211(1):13–42

    Google Scholar 

  64. Wang Y, Zhou X, Kou M (2018) Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles. Ceram Int 44(10):11512–11542

    Google Scholar 

  65. Wang Y, Zhou X, Kou M (2019) An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks. Eur J Mech A Solids 73:282–305

    MathSciNet  MATH  Google Scholar 

  66. Xiong W, Wang C, Wang C, Ma Q, Xu P (2020) Analysis of shadowing effect of propeller-ice milling conditions with peridynamics. Ocean Eng 195:106591

    Google Scholar 

  67. Xu Y, Kujala P, Hu Z, Li F, Chen G (2020) Numerical simulation of level ice impact on landing craft bow considering the transverse isotropy of Baltic Sea ice based on XFEM. Mar Struct 71:102735

    Google Scholar 

  68. Xue Y, Liu R, Liu Y, Zeng L, Han D (2019) Numerical simulations of the ice load of a ship navigating in level ice using peridynamics. CMES Comput Model Eng Sci 121(2):523–550

    Google Scholar 

  69. Ye L, Guo C, Wang C, Wang C, Chang X (2020) Peridynamic solution for submarine surfacing through ice. Ships Offshore Struct 15(5):535–549

    Google Scholar 

  70. Ye L, Wang C, Chang X, Zhang H (2017) Propeller-ice contact modeling with peridynamics. Ocean Eng 139:54–64

    Google Scholar 

  71. Yu H, Li S (2020) On energy release rates in peridynamics. J Mech Phys Solids 142:104024

    MathSciNet  Google Scholar 

  72. Yu H, Li S (2021) On approximation theory of nonlocal differential operators. Int J Numer Methods Eng 122:6984–7012

    MathSciNet  Google Scholar 

  73. Zhang Y, Deng H, Deng J, Liu C, Yu S (2020) Peridynamic simulation of crack propagation of non-homogeneous brittle rock-like materials. Theor Appl Fract Mech 106:102438

    Google Scholar 

  74. Zong Z (2022) A random pore model of sea ice for predicting its mechanical properties. Cold Reg Sci Technol 195:103473

    Google Scholar 

Download references

Acknowledgements

YS and YL were supported by the National Natural Science Foundation of China (Grant No. 51979049).

Author information

Authors and Affiliations

Authors

Contributions

YS: conceptualization, software, and writing; SL: methodology, supervision, and writing; YL: resources, analysis, and writing.

Corresponding author

Correspondence to Shaofan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Li, S. & Li, Y. Peridynamic modeling and simulation of thermo-mechanical fracture in inhomogeneous ice. Engineering with Computers 39, 575–606 (2023). https://doi.org/10.1007/s00366-022-01616-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01616-7

Keywords

Navigation