Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Boosting whale optimization with evolution strategy and Gaussian random walks: an image segmentation method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Stochastic optimization has been found in many applications, especially for several local optima problems, because of their ability to explore and exploit various zones of the feature space regardless of their disadvantage of immature convergence and stagnation. Whale optimization algorithm (WOA) is a recent algorithm from the swarm-intelligence family developed in 2016 that attempts to inspire the humpback whale foraging activities. However, the original WOA suffers from getting trapped in the suboptimal regions and slow convergence rate. In this study, we try to overcome these limitations by revisiting the components of the WOA with the evolutionary cores of Gaussian walk, CMA-ES, and evolution strategy that appeared in Virus colony search (VCS). In the proposed algorithm VCSWOA, cores of the VCS are utilized as an exploitation engine, whereas the cores of WOA are devoted to the exploratory phases. To evaluate the resulted framework, 30 benchmark functions from IEEE CEC2017 are used in addition to four different constrained engineering problems. Furthermore, the enhanced variant has been applied in image segmentation, where eight images are utilized, and they are compared with various WOA variants. The comprehensive test and the detailed results show that the new structure has alleviated the central shortcomings of WOA, and we witnessed a significant performance for the proposed VCSWOA compared to other peers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Google Scholar 

  2. Hassanien AE, Emary E (2018) Swarm intelligence: principles, advances, and applications. CRC Press, Boca Raton

    Google Scholar 

  3. Abualigah L, Gandomi AH, Elaziz MA, Hussien AG, Khasawneh AM, Alshinwan M, Houssein EH (2020) Nature-inspired optimization algorithms for text document clustering-a comprehensive analysis. Algorithms 13(12):345

    MathSciNet  Google Scholar 

  4. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Google Scholar 

  5. Rechenberg I (1978) Evolutionsstrategien. In: Schneider B, Ranft U (eds) Simulationsmethoden in der Medizin und Biologie. Medizinische Informatik und Statistik, vol 8. Springer, Berlin, Heidelberg. Berthold Schneider, Ulrich Ranft. https://doi.org/10.1007/978-3-642-81283-5_8

  6. Koza JR, Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT Press, Cambridge

    MATH  Google Scholar 

  7. Wang T, Liu W, Zhao J, Guo X, Terzija V (2020) A rough set-based bio-inspired fault diagnosis method for electrical substations. Int J Elec Power Energy Syst 119:105961. https://doi.org/10.1016/j.ijepes.2020.105961

    Article  Google Scholar 

  8. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4. IEEE, pp 1942–1948

  9. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B (Cybern) 26(1):29–41

    Google Scholar 

  10. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872

    Google Scholar 

  11. Li MD, Zhao H, Weng XW, Han T (2016) A novel nature-inspired algorithm for optimization: virus colony search. Adv Eng Softw 92:65–88

    Google Scholar 

  12. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Future Gener Comput Syst 111:300–323

    Google Scholar 

  13. Yang Y, Chen H, Heidari AA, Gandomi AH (2021) Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl 177:114864

    Google Scholar 

  14. Ahmadianfar I, Heidari AA, Gandomi AH, Chu X, Chen H (2021) Run beyond the metaphor: an efficient optimization algorithm based on runge kutta method. Expert Syst Appl 181:115079

    Google Scholar 

  15. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  16. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Google Scholar 

  17. Rao RV, Savsani VJ, Vakharia D (2012) Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183(1):1–15

    MathSciNet  Google Scholar 

  18. Glover F (1989) Tabu search-part i. ORSA J Comput 1(3):190–206

    MATH  Google Scholar 

  19. Ba AF, Huang H, Wang M, Ye X, Gu Z, Chen H, Cai X (2020) Levy-based antlion-inspired optimizers with orthogonal learning scheme. Eng Comput. https://doi.org/10.1007/s00366-020-01042-7

    Article  Google Scholar 

  20. Liang X, Cai Z, Wang M, Zhao X, Chen H, Li C (2020) Chaotic oppositional sine–cosine method for solving global optimization problems. Eng Comput. https://doi.org/10.1007/s00366-020-01083-y

    Article  Google Scholar 

  21. Hu L, Li H, Cai Z, Lin F, Hong G, Chen H, Lu Z (2017) A new machine-learning method to prognosticate paraquat poisoned patients by combining coagulation, liver, and kidney indices. PLoS One 12(10):e0186427

    Google Scholar 

  22. Huang H, Zhou S, Jiang J, Chen H, Li Y, Li C (2019) A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features. BMC Bioinform 20(8):1–14

    Google Scholar 

  23. Li C, Hou L, Sharma BY, Li H, Chen C, Li Y, Zhao X, Huang H, Cai Z, Chen H (2018) Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Comput Methods Programs Biomed 153:211–225

    Google Scholar 

  24. Zhao X, Zhang X, Cai Z, Tian X, Wang X, Huang Y, Chen H, Hu L (2019) Chaos enhanced grey wolf optimization wrapped elm for diagnosis of paraquat-poisoned patients. Comput Biol Chem 78:481–490

    Google Scholar 

  25. Pang J, Zhou H, Tsai Y-C, Chou F-D (2018) A scatter simulated annealing algorithm for the bi-objective scheduling problem for the wet station of semiconductor manufacturing. Comput Ind Eng 123:54–66. https://doi.org/10.1016/j.cie.2018.06.017

    Article  Google Scholar 

  26. Zhou H, Pang J, Chen P-K, Chou F-D (2018) A modified particle swarm optimization algorithm for a batch-processing machine scheduling problem with arbitrary release times and non-identical job sizes. Comput Ind Eng 123:67–81. https://doi.org/10.1016/j.cie.2018.06.018

    Article  Google Scholar 

  27. Li Q, Chen H, Huang H, Zhao X, Cai Z, Tong C, Liu W, Tian X (2017) An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis. Comput Math Methods Med. https://doi.org/10.1155/2017/9512741

    Article  Google Scholar 

  28. Liu T, Hu L, Ma C, Wang Z-Y, Chen H-L (2015) A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection. Int J Syst Sci 46(5):919–931

    MATH  Google Scholar 

  29. Zhang Y, Liu R, Wang X et al (2021) Boosted binary Harris hawks optimizer and feature selection. Eng Comput 37:3741–3770

    Google Scholar 

  30. Chen M, Zeng G, Lu K, Weng J (2019) A two-layer nonlinear combination method for short-term wind speed prediction based on elm, enn, and lstm. IEEE Internet Things J 6(4):6997–7010. https://doi.org/10.1109/JIOT.2019.2913176

    Article  Google Scholar 

  31. Ba AF, Huang H, Wang M, Ye X, Gu Z, Chen H, Cai X (2020) Levy-based antlion-inspired optimizers with orthogonal learning scheme. Eng Comput 1–22. https://doi.org/10.1007/s00366-020-01042-7

  32. Liang X, Cai Z, Wang M, Zhao X, Chen H, Li C (2020) Chaotic oppositional sine–cosine method for solving global optimization problems. Eng Comput 1–17

  33. Zhang H, Cai Z, Ye X, Wang M, Kuang F, Chen H, Li C, Li Y (2020) A multi-strategy enhanced salp swarm algorithm for global optimization. Eng Comput 1–27

  34. Zeng G-Q, Lu Y-Z, Mao W-J (2011) Modified extremal optimization for the hard maximum satisfiability problem. J Zhejiang Univ Sci C 12(7):589–596

    Google Scholar 

  35. Zeng G, Lu Y, Dai Y, Wu Z, Mao W, Zhang Z, Zheng CJIJICIC (2012) Backbone guided extremal optimization for the hard maximum satisfiability problem. Int J Innov Comput Inf Control 8(12):8355–8366

    Google Scholar 

  36. Cai Z, Gu J, Luo J, Zhang Q, Chen H, Pan Z, Li Y, Li C (2019) Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy. Expert Syst Appl 138:112814

    Google Scholar 

  37. Yu C, Chen M, Cheng K, Zhao X, Ma C, Kuang F, Chen H (2021) SGOA: annealing-behaved grasshopper optimizer for global tasks. Eng Comput. https://doi.org/10.1007/s00366-020-01234-1

    Article  Google Scholar 

  38. Shen L, Chen H, Yu Z, Kang W, Zhang B, Li H, Yang B, Liu D (2016) Evolving support vector machines using fruit fly optimization for medical data classification. Knowl Based Syst 96:61–75

    Google Scholar 

  39. Wang M, Chen H (2020) Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl Soft Comput 88:105946

    Google Scholar 

  40. Wang M, Chen H, Yang B, Zhao X, Hu L, Cai Z, Huang H, Tong C (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69–84

    Google Scholar 

  41. Zeng G-Q, Chen J, Dai Y-X, Li L-M, Zheng C-W, Chen M-RJN (2015) Design of fractional order pid controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 160:173–184

    Google Scholar 

  42. Zeng G-Q, Lu K-D, Dai Y-X, Zhang Z-J, Chen M-R, Zheng C-W, Wu D, Peng W-WJN (2014) Binary-coded extremal optimization for the design of pid controllers. Neurocomputing 138:180–188

    Google Scholar 

  43. Zeng G-Q, Xie X-Q, Chen M-R, Weng J (2019) Adaptive population extremal optimization-based pid neural network for multivariable nonlinear control systems. Swarm Evol Comput 44:320–334. https://doi.org/10.1016/j.swevo.2018.04.008

    Article  Google Scholar 

  44. Zhao X, Li D, Yang B, Chen H, Yang X, Yu C, Liu S (2015) A two-stage feature selection method with its application. Comput Electr Eng 47:114–125

    Google Scholar 

  45. Zhao X, Li D, Yang B, Ma C, Zhu Y, Chen H (2014) Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl Soft Comput 24:585–596

    Google Scholar 

  46. Pei H, Yang B, Liu J, Chang K (2020) Active surveillance via group sparse Bayesian learning. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2020.3023092

    Article  Google Scholar 

  47. Xue X, Chen Z, Wang S, Feng Z, Duan Y, Zhou Z (2020) Value entropy: a systematic evaluation model of service ecosystem evolution. IEEE Trans Serv Comput. https://doi.org/10.1109/TSC.2020.3016660

    Article  Google Scholar 

  48. Xue X, Wang SF, Zhan LJ, Feng ZY, Guo YD (2019) Social learning evolution (sle): computational experiment-based modeling framework of social manufacturing. IEEE Trans Ind Inform 15(6):3343–3355. https://doi.org/10.1109/tii.2018.2871167

    Article  Google Scholar 

  49. Li J, Soladie C, Seguier R (2020) Local temporal pattern and data augmentation for micro-expression spotting. IEEE Trans Affect Comput. https://doi.org/10.1109/TAFFC.2020.3023821

    Article  Google Scholar 

  50. Wang S-J, He Y, Li J, Fu X (2011) Mesnet: a convolutional neural network for spotting multi-scale micro-expression intervals in long videos. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2021.3064258

    Article  Google Scholar 

  51. Tu J, Lin A, Chen H, Li Y, Li C (2019) Predict the entrepreneurial intention of fresh graduate students based on an adaptive support vector machine framework. Math Probl Eng 2019:1–16

    Google Scholar 

  52. Wei Y, Ni N, Liu D, Chen H, Wang M, Li Q, Cui X, Ye H (2017) An improved grey wolf optimization strategy enhanced svm and its application in predicting the second major. Math Probl Eng 2017:1–12

    Google Scholar 

  53. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  54. Hussien AG, Hassanien AE, Houssein EH, Amin M, Azar AT (2019) New binary whale optimization algorithm for discrete optimization problems. Eng Optim 1–15

  55. Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput 22(1):1–15

    Google Scholar 

  56. Elaziz MA, Mirjalili S (2019) A hyper-heuristic for improving the initial population of whale optimization algorithm. Knowl Based Syst 172:42–63

    Google Scholar 

  57. Emary E, Zawbaa HM, Sharawi M (2019) Impact of lèvy flight on modern meta-heuristic optimizers. Appl Soft Comput 75:775–789

    Google Scholar 

  58. Oliva D, El Aziz MA, Hassanien AE (2017) Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl Energy 200:141–154

    Google Scholar 

  59. Xiong G, Zhang J, Shi D, He Y (2018) Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers Manag 174:388–405

    Google Scholar 

  60. Chen H, Xu Y, Wang M, Zhao X (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59

    MathSciNet  MATH  Google Scholar 

  61. Mafarja MM, Mirjalili S (2017) Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260:302–312

    Google Scholar 

  62. Abdel-Basset M, El-Shahat D, El-Henawy I, Sangaiah AK, Ahmed SH (2018) A novel whale optimization algorithm for cryptanalysis in Merkle–Hellman cryptosystem. Mob Netw Appl 23(4):723–733

    Google Scholar 

  63. Jadhav AN, Gomathi N (2018) Wgc: hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alex Eng J 57(3):1569–1584

    Google Scholar 

  64. Agrawal R, Kaur B, Sharma S (2020) Quantum based whale optimization algorithm for wrapper feature selection. Appl Soft Comput 89:106092

    Google Scholar 

  65. Salgotra R, Singh U, Saha S (2019) On some improved versions of whale optimization algorithm. Arabian J Sci Eng 44(11):9653–9691

    Google Scholar 

  66. Hussien AG, Houssein EH, Hassanien AE (2017) A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In: 2017 Eighth international conference on intelligent computing and information systems (ICICIS). IEEE, pp 166–172

  67. Hussien AG, Hassanien AE, Houssein EH, Bhattacharyya S, Amin M (2019) S-shaped binary whale optimization algorithm for feature selection. In: Recent trends in signal and image processing. Springer, pp 79–87

  68. Hemasian-Etefagh F, Safi-Esfahani F (2019) Group-based whale optimization algorithm. Soft Comput 1–27

  69. Hassib EM, El-Desouky AI, Labib LM, El-kenawy E-SM (2019) Woa+ brnn: an imbalanced big data classification framework using whale optimization and deep neural network. Soft Comput 1–20

  70. Liu M, Yao X, Li Y (2020) Hybrid whale optimization algorithm enhanced with lévy flight and differential evolution for job shop scheduling problems. Appl Soft Comput 87:105954

    Google Scholar 

  71. Jiang R, Yang M, Wang S, Chao T (2020) An improved whale optimization algorithm with armed force program and strategic adjustment. Appl Math Model 81:603–623

    MathSciNet  MATH  Google Scholar 

  72. Guo W, Liu T, Dai F, Xu P (2020) An improved whale optimization algorithm for forecasting water resources demand. Appl Soft Comput 86:105925

    Google Scholar 

  73. Got A, Moussaoui A, Zouache D (2020) A guided population archive whale optimization algorithm for solving multiobjective optimization problems. Expert Syst Appl 141:112972

    Google Scholar 

  74. Abdel-Basset M, Manogaran G, El-Shahat D, Mirjalili S (2018) Integrating the whale algorithm with tabu search for quadratic assignment problem: a new approach for locating hospital departments. Appl Soft Comput 73:530–546

    Google Scholar 

  75. Tharwat A, Moemen YS, Hassanien AE (2017) Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines. J Biomed Inform 68:132–149

    Google Scholar 

  76. Zhao D, Liu H, Zheng Y, He Y, Lu D, Lyu C (2019) Whale optimized mixed kernel function of support vector machine for colorectal cancer diagnosis. J Biomed Inform 92:103124

    Google Scholar 

  77. Gharehchopogh FS, Gholizadeh H (2019) A comprehensive survey: Whale optimization algorithm and its applications. Swarm Evol Comput 48:1–24

    Google Scholar 

  78. Shahinzadeh H, Gharehpetian GB, Moazzami M, Moradi J, Hosseinian SH (2017) Unit commitment in smart grids with wind farms using virus colony search algorithm and considering adopted bidding strategy. In: 2017 Smart Grid Conference (SGC). IEEE, pp 1–9

  79. Jayasena KPN, Li L, Elaziz MA, Xiong S (2018) Multi-objective energy efficient resource allocation using virus colony search (vcs) algorithm. In: 2018 IEEE 20th international conference on high performance computing and communications; IEEE 16th international conference on smart city; IEEE 4th international conference on data science and systems (HPCC/SmartCity/DSS). IEEE, pp 766–773

  80. Hosseini S, Moradian M, Shahinzadeh H, Ahmadi S (2018) Optimal placement of distributed generators with regard to reliability assessment using virus colony search algorithm. Int J Renew Energy Res (IJRER) 8(2):714–723

    Google Scholar 

  81. Yousri D, Allam D, Eteiba M (2019) Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in permanent magnet synchronous motor. Appl Soft Comput 74:479–503

    Google Scholar 

  82. Elaziz MA, Oliva D (2018) Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Convers Manag 171:1843–1859

    Google Scholar 

  83. Elhosseini MA, Haikal AY, Badawy M, Khashan N (2019) Biped robot stability based on an a-c parametric whale optimization algorithm. J Comput Sci 31:17–32

    MathSciNet  Google Scholar 

  84. Tubishat M, Abushariah MA, Idris N, Aljarah I (2019) Improved whale optimization algorithm for feature selection in arabic sentiment analysis. Appl Intell 49(5):1688–1707

    Google Scholar 

  85. He Y, Dai L, Zhang H (2020) Multi-branch deep residual learning for clustering and beamforming in user-centric network. IEEE Commun Lett 24(10):2221–2225. https://doi.org/10.1109/LCOMM.2020.3005947

    Article  Google Scholar 

  86. Yan J, Meng Y, Yang X, Luo X, Guan X (2021) Privacy-preserving localization for underwater sensor networks via deep reinforcement learning. IEEE Trans Inform Forensics Secur 16:1880–1895. https://doi.org/10.1109/TIFS.2020.3045320

    Article  Google Scholar 

  87. García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special session on real parameter optimization. J Heuristics 15(6):617

    MATH  Google Scholar 

  88. Hussien AG, Oliva D, Houssein EH, Juan AA, Yu X (2020) Binary whale optimization algorithm for dimensionality reduction. Mathematics 8(10):1821

    Google Scholar 

  89. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  90. Hussien AG, Amin M, Abd El Aziz M (2020) A comprehensive review of moth-flame optimisation: variants, hybrids, and applications. J Exp Theor Artif Intell 1–21

  91. Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput. https://doi.org/10.1108/02644401011008577

    Article  MATH  Google Scholar 

  92. He Q, Wang L (2007) A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl Math Comput 186(2):1407–1422

    MathSciNet  MATH  Google Scholar 

  93. Gandomi AH, Yang X-S, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255

    Google Scholar 

  94. Hussien AG (2021) An enhanced opposition-based salp swarm algorithm for global optimization and engineering problems. J Ambient Intell Humaniz Comput 1–22

  95. Liu Y, Zhang Z, Liu X, Wang L, Xia X (2021) Efficient image segmentation based on deep learning for mineral image classification. Adv Powder Technol 32(10):3885–3903

    Google Scholar 

  96. Liu Y, Zhang Z, Liu X, Wang L, Xia X (2021) Ore image classification based on small deep learning model: Evaluation and optimization of model depth, model structure and data size. Miner Eng 172:107020. https://doi.org/10.1016/j.mineng.2021.107020

    Article  Google Scholar 

  97. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    MathSciNet  Google Scholar 

  98. Kapur JN, Sahoo PK, Wong AK (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29(3):273–285

    Google Scholar 

  99. Huynh-Thu Q, Ghanbari M (2008) Scope of validity of psnr in image/video quality assessment. Electron Lett 44(13):800–801

    Google Scholar 

  100. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Google Scholar 

  101. Zhang L, Zhang L, Mou X, Zhang D (2011) Fsim: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    MathSciNet  MATH  Google Scholar 

  102. Qiu S, Wang Z, Zhao H, Hu H (2016) Using distributed wearable sensors to measure and evaluate human lower limb motions. IEEE Tran Instrum Meas 65(4):939–950

    Google Scholar 

  103. Yang C, Zhao H, Bruzzone L, Benediktsson JA, Liang Y, Liu B, Zeng X, Guan R, Li C, Ouyang Z (2020) Lunar impact crater identification and age estimation with Chang’e data by deep and transfer learning. Nat Commun 11(1):6358. https://doi.org/10.1038/s41467-020-20215-y

    Article  Google Scholar 

  104. Li J, Chen C, Chen H, Tong C (2017) Towards context-aware social recommendation via individual trust. Knowl Based Syst 127:58–66. https://doi.org/10.1016/j.knosys.2017.02.032

    Article  Google Scholar 

  105. Li J, Lin J (2020) A probability distribution detection based hybrid ensemble qos prediction approach. Inf Sci 519:289–305. https://doi.org/10.1016/j.ins.2020.01.046

    Article  MathSciNet  Google Scholar 

  106. Li J, Zheng X-L, Chen S-T, Song W-W, Chen D-R (2014) An efficient and reliable approach for quality-of-service-aware service composition. Inf Sci 269:238–254. https://doi.org/10.1016/j.ins.2013.12.015

    Article  Google Scholar 

  107. Jin L, Wen Z, Hu Z (2020) Topology-preserving nonlinear shape registration on the shape manifold. Multimed Tools Appl 1–13

  108. Wu X, Xu X, Liu J, Wang H, Hu B, Nie FJ (2020) Supervised feature selection with orthogonal regression and feature weighting. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2020.2991336

    Article  Google Scholar 

  109. Deng W, Xu J, Zhao H, Song Y (2020) A novel gate resource allocation method using improved pso-based qea. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2020.3025796

    Article  Google Scholar 

  110. W D, JJ X, YJ S, HM Z (2020) An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application. Int J Bioinspired Comput 16(3):158–170

    Google Scholar 

  111. Wang X, Bennamoun M, Sohel F, Lei H (2021) Diffusion geometry derived keypoints and local descriptors for 3d deformable shape analysis. J Circuits Syst Comput 30(01):2150016

    Google Scholar 

  112. Wang X, Sohel F, Bennamoun M, Guo Y, Lei H (2017) Scale space clustering evolution for salient region detection on 3d deformable shapes. Pattern Recognit 71:414–427

    Google Scholar 

  113. Feng C, Zhu Z, Cui Z, Ushakov V, Dreher J, Luo W, Gu R, Wu X, Krueger F (2021) Prediction of trust propensity from intrinsic brain morphology and functional connectome. Hum Brain Mapp 42(1):175–191

    Google Scholar 

  114. Li Q, Wu X, Liu T (2021) Differentiable neural architecture search for optimal spatial/temporal brain function network decomposition. Med Image Anal 69:101974. https://doi.org/10.1016/j.media.2021.101974

    Article  Google Scholar 

  115. Zhang L, Zhang Z, Wang W, Jin Z, Su Y, Chen H (2021) Research on a covert communication model realized by using smart contracts in blockchain environment. IEEE Syst J. https://doi.org/10.1109/JSYST.2021.3057333

    Article  Google Scholar 

  116. Zhang L, Zhang Z, Wang W, Waqas R, Zhao C, Kim S, Chen H (2020) A covert communication method using special bitcoin addresses generated by vanitygen. Comput Mater Continua 65(1):597–616 http://www.techscience.com/cmc/v65n1/39585

  117. Zhang L, Zou Y, Wang W, Jin Z, Su Y, Chen H (2021) Resource allocation and trust computing for blockchain-enabled edge computing system. Comput Secur. https://doi.org/10.1016/j.cose.2021.102249

    Article  Google Scholar 

  118. Chen H, Yang B, Liu J, Zhou X-N, Philip SY (2019) Mining spatiotemporal diffusion network: a new framework of active surveillance planning. IEEE Access 7:108458–108473

    Google Scholar 

  119. Luo J, Li M, Liu X, Tian W, Zhong S,... Shi K (2020) Stabilization analysis for fuzzy systems with a switched sampled-data control. J Franklin Inst 357(1):39–58. https://doi.org/10.1016/j.jfranklin.2019.09.029

  120. Liu X, Yang B, Chen H, Musial K, Chen H, Li Y, Zuo W (2021) A scalable redefined stochastic blockmodel. ACM Trans Knowl Discov Data (TKDD) 15(3):1–28

    Google Scholar 

  121. Cao X, Cao T, Gao F, Guan X (2021) Risk-averse storage planning for improving res hosting capacity under uncertain siting choice. IEEE Trans Sustain Energy. https://doi.org/10.1109/TSTE.2021.3075615

    Article  Google Scholar 

  122. Fei X, Wang J, Ying S, Hu Z, Shi J (2020) Projective parameter transfer based sparse multiple empirical kernel learning machine for diagnosis of brain disease. Neurocomputing 413:271–283. https://doi.org/10.1016/j.neucom.2020.07.008

    Article  Google Scholar 

  123. Hu Z, Wang J, Zhang C, Luo Z, Luo X, Xiao L, Shi J, Uncertainty modeling for multi center autism spectrum disorder classification using takagi-sugeno-kang fuzzy systems. IEEE Trans Cogn Dev Syst

  124. Saber A, Sakr M, Abo-Seida OM, Keshk A, Chen H (2021) A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique. IEEE Access 9:71194–71209. https://doi.org/10.1109/ACCESS.2021.3079204

    Article  Google Scholar 

  125. Qiu S, Wang Z, Zhao H, Qin K, Li Z, Hu H (2018) Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion. Inf Fusion 39:108–119

    Google Scholar 

  126. Huang P, Zhao L, Jiang R, Wang T, Zhang X (2021) Self-filtering image dehazing with self-supporting module. Neurocomputing 432:57–69

    Google Scholar 

  127. Wang T, Zhao L, Huang P, Zhang X, Xu J (2021) Haze concentration adaptive network for image dehazing. Neurocomputing 439:75–85

    Google Scholar 

  128. Zhang X, Wang T, Wang J, Tang G, Zhao L (2020) Pyramid channel-based feature attention network for image dehazing. Comput Vis Image Underst 197–198:103003. https://doi.org/10.1016/j.cviu.2020.103003

    Article  Google Scholar 

  129. Zhou W, Yu L, Zhou Y, Qiu W, Wu M,... Luo T (2018) Local and Global Feature Learning for Blind Quality Evaluation of Screen Content and Natural Scene Images. IEEE Trans Image Process 27(5):2086–2095. https://doi.org/10.1109/TIP.2018.2794207

  130. Zhang X, Fan M, Wang D, Zhou P, Tao D Top-k feature selection framework using robust 0-1 integer programming. IEEE Trans Neural Netw Learn Syst

  131. Zhang X, Li W, Ye X, Maybank S (2015) Robust hand tracking via novel multi-cue integration. Neurocomputing 157:296–305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxi Liang, Huiling Chen or Zhifang Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussien, A.G., Heidari, A.A., Ye, X. et al. Boosting whale optimization with evolution strategy and Gaussian random walks: an image segmentation method. Engineering with Computers 39, 1935–1979 (2023). https://doi.org/10.1007/s00366-021-01542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01542-0

Keywords

Navigation