Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A boundary element method formulation based on the Caputo derivative for the solution of the diffusion-wave equation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A boundary element method formulation is developed and validated through the solution of problems governed by the diffusion-wave equation, for which the order of the time derivative, say α, ranges in the interval (1, 2). This fractional time derivative is defined as an integro-differential operator in the Caputo sense. For α = 2, one recovers the classical wave equation. From the weighted residual method point of view, with the Laplace equation fundamental solution playing the role of the weighting function, a D-BEM type formulation is generated, in which the integrand of the domain integral contains the fractional time derivative. The Houbolt scheme is adopted to represent the second order time derivative of the variable of interest, say u, which appears in the Caputo operator. In all the examples, the proposed formulation provided accurate results for α as small as 1.05. Indeed, the analyses were carried out for α = 1.05, 1.2, 1.5, 1.8, 2.0, with the aim of verifying the influence of the order of the time derivative in the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley-Interscience, New York

    MATH  Google Scholar 

  2. Oldham KB, Spanier J (1974) The fractional calculus. Theory and applications of differentiation and integration to arbitrary order. Academic Press, Inc., New York

    MATH  Google Scholar 

  3. Ortigueira MD (2011) Fractional calculus for scientists and engineers, Lecture Notes in Electrical Engineering, vol 84. Springer

  4. Mainardi F (2018) Fractional calculus: theory and applications. Printed edition of the special issue published in Mathematics, Mdpi AG

  5. Yang Y, Zhang HH (2019) Fractional calculus with its applications in engineering and technology. Morgan & Claypool Publishers, San Rafael

    Book  MATH  Google Scholar 

  6. Sun H, Zhang Y, Baleanu D, Chen W, Chen Y (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul 64:213–231

    Article  MATH  Google Scholar 

  7. Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172:65–77

    Article  MathSciNet  MATH  Google Scholar 

  8. Tadjeran C, Meerschaert MM (2007) A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J Comput Phys 220:813–823

    Article  MathSciNet  MATH  Google Scholar 

  9. Murio DA (2008) Implicit finite difference approximation for time fractional diffusion equations. Comput Math Appl 56:1138–1145

    Article  MathSciNet  MATH  Google Scholar 

  10. Murillo JQ, Yuste SB (2011) An explicit difference method for solving fractional diffusion and diffusion-wave equations in the caputo form. J Comput Nonlinear Dyn. https://doi.org/10.1115/1.4002687

    Article  Google Scholar 

  11. Li C, Zeng F (2013) The finite difference methods for fractional ordinary differential equations. Numer Funct Anal Optim 34:149–179

    Article  MathSciNet  MATH  Google Scholar 

  12. Li W, Li C (2015) Second order explicit difference schemes for the space fractional advection diffusion equation. Appl Math Comput 257:446–457

    MathSciNet  MATH  Google Scholar 

  13. Kumar K, Pandey RK, Yadav S (2019) Finite difference scheme for a fractional telegraph equation with generalized fractional derivative terms. Phys A Stat Mech Appl 535:122271. https://doi.org/10.1016/j.physa.2019.122271

    Article  MathSciNet  MATH  Google Scholar 

  14. Agrawal OP (2008) A general finite element formulation for fractional variational problems. J Math Anal Appl 337:1–12

    Article  MathSciNet  MATH  Google Scholar 

  15. Deng WH (2008) Finite element method for the space and time fractional Fokker-Planck equation. SIAM J Numer Anal 47:204–226

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang Q, Huang G, Zhan H (2008) A finite element solution for the fractional advection-dispersion equation. Adv Water Resour 31:1578–1589

    Article  Google Scholar 

  17. Zheng Y, Li C, Zhao Z (2010) A note on the finite element method for the space fractional advection diffusion equation. Comput Math Appl 59:1718–1726

    Article  MathSciNet  MATH  Google Scholar 

  18. Katsikadelis JT (2011) The BEM for numerical solution of partial fractional differential equations. Comput Math Appl 62:891–901

    Article  MathSciNet  MATH  Google Scholar 

  19. Dehghan M, Safarpoor M (2016) The dual reciprocity boundary elements method for the linear and nonlinear two-dimensional time-fractional partial differential equations. Math Methods Appl Sci 39:3979–3995

    Article  MathSciNet  MATH  Google Scholar 

  20. Kumar A, Bhardwaj A, Kumar BVR (2019) A meshless local collocation method for time fractional diffusion wave equation. Comput Math Appl 78:1851–1861

    Article  MathSciNet  MATH  Google Scholar 

  21. Zafarghandi FS, Mohammadi M, Babolian E, Javadi S (2019) Radial basis functions method for solving the fractional diffusion equations. Appl Math Comput 342:224–246

    MathSciNet  MATH  Google Scholar 

  22. Heydari MH, Azzavadh Z (2021) Orthonormal Bernstein polynomials for solving nonlinear variable-order time fractional fourth-order diffusion-wave equation with nonsingular fractional derivative. Math Methods Appl Sci 44:3098–3110

    Article  MathSciNet  MATH  Google Scholar 

  23. Hosseininia M, Heydari MH, Avazzadeh Z (2020) Numerical study of the variable-order fractional version of the nonlinear fourth-order 2D diffusion-wave equation via 2D Chebyshev wavelets. Eng Comput. https://doi.org/10.1007/s00366-020-00995-z

    Article  MATH  Google Scholar 

  24. Heydari MH, Avazzadeh Z, Haromi MF (2019) A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. Appl Math Comput 341:215–228

    MathSciNet  MATH  Google Scholar 

  25. Sarvestani FS, Heydari MH, Kiknam A, Avazzadeh Z (2019) A wavelet approach for the multi-term time fractional diffusion-wave equation. Int J Comput Math 96:640–661

    Article  MathSciNet  MATH  Google Scholar 

  26. Heydari MH, Avazzadeh Z, Yang Y (2019) A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Appl Math Comput 352:235–248

    MathSciNet  MATH  Google Scholar 

  27. Majeed A, Kamran M, Rafique M (2020) An approximation to the solution of time fractional modified Burgers’ equation using extended cubic B-spline method. Comput Appl Math 39:257

    Article  MathSciNet  MATH  Google Scholar 

  28. Majeed A, Kamran M, Asghar N, Baleanu D (2020) Numerical approximation of inhomogeneous time fractional Burgers-Huxley equation with B-spline functions and Caputo Derivative. Eng Comput. https://doi.org/10.1007/s00366-020-01261-y

    Article  Google Scholar 

  29. Majeed A, Kamran M, Iqbal MK, Baleanu D (2020) Solving time fractional Burgers’ and Fisher’s equations using cubic B-spline approximation method. Adv Differ Equ 175:1–15. https://doi.org/10.1186/s13662-020-02619-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Carrer JAM, Seaid M, Trevelyan J, Solheid BS (2019) The boundary element method applied to the solution of the anomalous diffusion problem. Eng Anal Bound Elem 109:129–142

    Article  MathSciNet  MATH  Google Scholar 

  31. Brebbia CA, Telles JCF, Wrobel LC (1984) Boundary element techniques: theory and application in engineering. Springer Verlag, Berlin

    Book  MATH  Google Scholar 

  32. Houbolt JC (1950) A recurrence matrix solution for the dynamic response of elastic aircraft. J Aeronaut Sci 17:540–550

    Article  MathSciNet  Google Scholar 

  33. Ray SS (2007) Exact solutions for time-fractional diffusion-wave equations by decomposition method. Phys Scr 75:53–61

    Article  MathSciNet  MATH  Google Scholar 

  34. Garrappa R (2015) Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J Numer Anal 53:1350–1369

    Article  MathSciNet  MATH  Google Scholar 

  35. Carrer JAM, Mansur WJ, Vanzuit RJ (2009) Scalar wave equation by the boundary element method: a D-BEM approach with non-homogeneous initial conditions. Comput Mech 44:31–44

    Article  MathSciNet  MATH  Google Scholar 

  36. Mansur WJ (1983) A time-stepping technique to solve wave propagation problems using the boundary element method. Ph.D. Thesis, University of Southampton

  37. Carrer JAM, Costa VL (2015) Boundary element method formulation for the solution of the scalar wave equation in one-dimensional problems. J Braz Soc Mech Sci Eng 37:959–971

    Article  Google Scholar 

  38. Carrer JAM, Mansur WJ (2020) One-dimensional scalar wave propagation in multi-region domains by the boundary element method. J Braz Soc Mech Sci Eng 42:134. https://doi.org/10.1007/s40430-020-2226-5

    Article  Google Scholar 

  39. Greenberg MD (1998) Advanced engineering mathematics. Prentice-Hall, New Jersey

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. M. Carrer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrer, J.A.M., Solheid, B.S., Trevelyan, J. et al. A boundary element method formulation based on the Caputo derivative for the solution of the diffusion-wave equation. Engineering with Computers 38 (Suppl 4), 3563–3580 (2022). https://doi.org/10.1007/s00366-021-01480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01480-x

Keywords

Navigation