Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Designing new hybrid artificial intelligence model for CFST beam flexural performance prediction

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A substantial number of experimental studies have reported on the flexural performance of concrete-filled steel tube (CFST) beams. Due to the problem complexity, theoretically modeling of the flexural bending capacity (Mu) and the flexural stiffness at the initial and serviceability limits (\(K_{{\text{i}}}\) and \(K_{{\text{s}}}\)) of CFST beams remains challenging mission in the structural engineering field. Hence, this research proposes new numerical models for modeling the flexural capacities (Mu, \(K_{{\text{i}}}\), and \(K_{{\text{s}}}\)) of CFST beams under static bending load. For this purpose, numerous existing experimental and numerical results of CFST beams are collected for developing a new numerical model called as hybridized artificial neural network (ANN) model with particle swarm optimization (PSO) algorithm. The results of the proposed model validated against the existing results of CFST beams tested over the literature. In addition, PSO–ANN model verified with those obtained by the existing standards and approaches (EC4, BS5400, AISC, AIJ, and others) for the same corresponding beams. The proposed PSO–ANN model confirmed its capability to be used as an alternative theoretical approach to predict the flexural strength and stiffness capacities of CFST beams. The PSO–ANN model achieved mean values of about 0.933–0.989 with a coefficient of variation ranged from 4.98 to 9.53% compared to the existing results that obtained by others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A c :

Area of concrete core cross-section, mm2

A s :

Area of steel tube cross-section, mm2

AR:

The ratio of concrete core cross-section area, estimated from Ac/(As + Ac)

B :

Width of rectangular steel tube, mm

COV:

Coefficient of variation

C 1 :

The learning parameters associated with individual particles

C 2 :

The learning parameters associated with other particles

D :

Diameter of circular steel tube/depth of rectangular steel tube, mm

E c :

Modulus of elasticity for concrete, GPa

E s :

Modulus of elasticity for steel, GPa

f :

Compression stress of concrete at relevant strain (ε) value, MPa

f cu :

Concrete cube compressive strength at 28 days, MPa

f co :

Unconfined concrete cylinder compressive strength at 28 days, MPa

f cc :

Confined concrete strength, MPa

f comp :

Nominal composite stress, MPa

f ck :

Characteristic concrete strength (0.67fcu), MPa

f cr :

Stress of concrete at cracking failure, MPa

f scy :

Yield strength of the composite section, MPa

f t :

Tensile stress of concrete at relevant strain (εt) value, MPa

f u :

Ultimate strength of steel, MPa

f y :

Yield strength of steel, MPa

G best :

The optimal duty cycle D value for all particles

I c :

Moment of inertia for concrete tube cross-section, mm4

I s :

Moment of inertia for steel tube cross-section, mm4

K i :

Initial flexural stiffness of composite section, kN m2

K s :

Serviceability-level flexural stiffness of composite section, kN m2

K i-P :

Predicted initial flexural stiffness of composite section, kN m2

K s-P :

Predicted serviceability-level flexural stiffness of composite section, kN m2

L e :

Effective length of specimen, mm or m

M :

Bending moment, kN m

M u :

Ultimate bending moment (flexural strength capacity), kN m

MR:

The ratio of concrete modulus of elasticity, estimated from Ec/(Es + Ec)

M u-p :

Predicted ultimate bending moment capacity, kN m

MV:

Mean value

N :

The number of times each particle moves.

n :

Is the number of the training pattern

ns:

Is the number of test data points

O i :

Is the output of the network

Rand1(·):

A value between 0 and 1 generated by the first random number generator

Rand2(·):

A value between 0 and 1 generated by the second random number generator

P :

The number of points tracked at different initial duty cycle D values.

PAi and PEi :

Are the actual value and estimated value of the flexural capacity and stiffness values, respectively

\(P_{i}^{j}\) :

The duty cycle D value for the ith particle during the jth iteration

\(P_{{{\text{best}},i}}\) :

The optimal duty cycle D value for the ith particle

r :

Internal radius of concrete, mm

t :

Wall thickness of steel tube, mm

\(t_{i}\) :

Is the output of the target

\(V_{i}^{j}\) :

The movement speed of the ith particle during the jth iteration

W :

The correlation with the most recent particle movement distance

W scm :

Section modulus for the circular/rectangular tube sections, m3

Z ccmp :

Section modulus for the circular/rectangular composite sections, m3

γ m :

Flexural strength index

β :

Flexural index (in the current study)

ε :

Strain at relevant concrete compression stress (f) value

ε t :

Strain at relevant concrete tension stress (ft) value

ε co :

Strain at unconfined concrete compressive strength (fco), 0.003 (current study)

ε cc :

Strain at confined concrete compressive strength (fcc)

ε cu :

Ultimate strain limit of confined concrete, = 11 εcc (current study)

ε cr :

Strain of concrete at ultimate cracking failure (fcr)

ε y :

Yield strain of steel

ε u :

Ultimate strain of steel

ξ :

Steel confinement factor (As·fy)/(Ac·fck)

λ i :

Reduction factor for Ki of composite section

λ s :

Reduction factor for Ks of composite section

φ i :

Curvature value relevant to the initial-level flexural stiffness (Ki), 1/m

φ s :

Curvature value relevant to the serviceability-level flexural stiffness (Ks), 1/m

References

  1. Nakamura S, Momiyama Y, Hosaka T, Homma K (2002) New technologies of steel/concrete composite bridges. J Constr Steel Res 58:99–130. https://doi.org/10.1016/S0143-974X(01)00030-X

    Article  Google Scholar 

  2. Kang J-Y, Choi E-S, Chin W-J, Lee J-W (2007) Flexural behavior of concrete-filled steel tube members and its application. Int J Steel Struct 7:319–324

    Google Scholar 

  3. Han LH, Xu W, He SH, Tao Z (2015) Flexural behaviour of concrete filled steel tubular (CFST) chord to hollow tubular brace truss: experiments. J Constr Steel Res 109:137–151. https://doi.org/10.1016/j.jcsr.2015.03.002

    Article  Google Scholar 

  4. Lu YQ, Kennedy DJL (1994) The flexural behaviour of concrete-filled hollow structural sections. Can J Civ Eng 21:111–130

    Article  Google Scholar 

  5. Elchalakani M, Zhao XL, Grzebieta RH (2001) Concrete-filled circular steel tubes subjected to pure bending. J Constr Steel Res 57:1141–1168. https://doi.org/10.1016/S0143-974X(01)00035-9

    Article  Google Scholar 

  6. Probst AD, Kang TH-K, Ramseyer C, Kim U (2010) Composite flexural behavior of full-scale concrete-filled tubes without axial loads. J Struct Eng 136:1401–1412. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000241

    Article  Google Scholar 

  7. Liao F-Y, Han L-H, He S-H (2011) Behavior of CFST short column and beam with initial concrete imperfection: experiments. J Constr Steel Res 67:1922–1935. https://doi.org/10.1016/j.jcsr.2011.06.009

    Article  Google Scholar 

  8. Guler S, Çopur A, Aydogan M (2012) Flexural behaviour of square UHPC-filled hollow steel section beams. Struct Eng Mech 43:225–237. https://doi.org/10.12989/sem.2012.43.2.225

    Article  Google Scholar 

  9. Moon J, Roeder CW, Lehman DE, Lee H-E (2012) Analytical modeling of bending of circular concrete-filled steel tubes. Eng Struct 42:349–361. https://doi.org/10.1016/j.engstruct.2012.04.028

    Article  Google Scholar 

  10. Yang Y-F, Ma G-L (2013) Experimental behaviour of recycled aggregate concrete filled stainless steel tube stub columns and beams. Thin Walled Struct 66:62–75. https://doi.org/10.1016/j.tws.2013.01.017

    Article  Google Scholar 

  11. Fu Z, Ji B, Maeno H et al (2014) Flexural behavior of lightweight aggregate concrete filled steel tube. Adv Steel Constr 10:385–403

    Google Scholar 

  12. Wang WH, Han LH, Li W, Jia YH (2014) Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate. Constr Build Mater 51:352–363. https://doi.org/10.1016/j.conbuildmat.2013.10.049

    Article  Google Scholar 

  13. Ren QX, Han LH, Lam D, Li W (2014) Tests on elliptical concrete filled steel tubular (CFST) beams and columns. J Constr Steel Res 99:149–160. https://doi.org/10.1016/j.jcsr.2014.03.010

    Article  Google Scholar 

  14. Wang QL, Shao YB (2015) Flexural performance of circular concrete filled CFRP-steel tubes. Adv Steel Constr 11:127–149

    Google Scholar 

  15. Yang YF (2015) Modelling of recycled aggregate concrete-filled steel tube (RACFST) beam-columns subjected to cyclic loading. Steel and Compos Struct 18:213–233. https://doi.org/10.12989/scs.2015.18.1.213

    Article  Google Scholar 

  16. Han L-H (2004) Flexural behaviour of concrete-filled steel tubes. J Constr Steel Res 60:313–337. https://doi.org/10.1016/j.jcsr.2003.08.009

    Article  Google Scholar 

  17. Al Zand AW, Badaruzzaman WHW, Mutalib AA, Hilo SJ (2016) The enhanced performance of CFST beams using different strengthening schemes involving unidirectional CFRP sheets: an experimental study. Eng Struct 128:184–198. https://doi.org/10.1016/j.engstruct.2016.09.044

    Article  Google Scholar 

  18. Javed MF, Sulong NHR, Memon SA et al (2017) FE modelling of the flexural behaviour of square and rectangular steel tubes filled with normal and high strength concrete. Thin Walled Struct 119:470–481. https://doi.org/10.1016/j.tws.2017.06.025

    Article  Google Scholar 

  19. Hassanein MF, Kharoob OF, Taman MH (2017) Experimental investigation of cementitious material-filled square thin-walled steel beams. Thin Walled Struct 114:134–143. https://doi.org/10.1016/j.tws.2017.01.031

    Article  Google Scholar 

  20. Al Zand AW, Badaruzzaman WHW, Mutalib AA, Hilo SJ (2017) Rehabilitation and strengthening of high-strength rectangular CFST beams using a partial wrapping scheme of CFRP sheets: experimental and numerical study. Thin Walled Struct 114:80–91. https://doi.org/10.1016/j.tws.2017.01.028

    Article  Google Scholar 

  21. Javed MF, Ramli Sulong NH, Memon SA et al (2018) Experimental and numerical study of flexural behavior of novel oil palm concrete filled steel tube exposed to elevated temperature. J Clean Prod 205:95–114. https://doi.org/10.1016/j.jclepro.2018.09.032

    Article  Google Scholar 

  22. Javed MF, Ramli Sulong NH, Memon SA et al (2018) Flexural behaviour of steel hollow sections filled with concrete that contains OPBC as coarse aggregate. J Constr Steel Res 148:287–294. https://doi.org/10.1016/j.jcsr.2018.05.035

    Article  Google Scholar 

  23. Al Zand AW, Badaruzzaman WHW, Mutalib AA, Hilo SJ (2018) Flexural behavior of CFST beams partially strengthened with unidirectional CFRP sheets: experimental and theoretical study. J Compos Constr 22:04018018. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000852

    Article  Google Scholar 

  24. Al Zand AW, Hosseinpour E, Badaruzzaman WHW (2018) The influence of strengthening the hollow steel tube and CFST beams using U-shaped CFRP wrapping scheme. Struct Eng Mech 66:229–235. https://doi.org/10.12989/sem.2018.66.2.229

    Article  Google Scholar 

  25. Al-Shaar AAM, Göğüş MT (2018) Flexural behavior of lightweight concrete and self-compacting concrete-filled steel tube beams. J Constr Steel Res 149:153–164. https://doi.org/10.1016/j.jcsr.2018.07.027

    Article  Google Scholar 

  26. Guler S, Yavuz D (2019) Post-cracking behavior of hybrid fiber-reinforced concrete-filled steel tube beams. Constr Build Mater 205:285–305. https://doi.org/10.1016/j.conbuildmat.2019.01.192

    Article  Google Scholar 

  27. Gho WM, Liu D (2004) Flexural behaviour of high-strength rectangular concrete-filled steel hollow sections. J Constr Steel Res 60:1681–1696. https://doi.org/10.1016/j.jcsr.2004.03.007

    Article  Google Scholar 

  28. Al Zand AW, Wan Badaruzzaman WH, Ali MM et al (2020) Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners. Steel Compos Struct 34:123–139. https://doi.org/10.12989/scs.2020.34.1.123

    Article  Google Scholar 

  29. Yang X, Yang H, Zhang S (2020) Transverse impact behavior of high-strength concrete filled normal-/high-strength square steel tube columns. Int J Impact Eng 139:103512. https://doi.org/10.1016/j.ijimpeng.2020.103512

    Article  Google Scholar 

  30. Al Zand AW, Badaruzzaman WHW, Al-Shaikhli MS, Ali MM (2020) Flexural performance of square concrete-filled steel tube beams stiffened with V-shaped grooves. J Constr Steel Res 166:105930. https://doi.org/10.1016/j.jcsr.2020.105930

    Article  Google Scholar 

  31. Xu J, Wang Y, Ren R et al (2020) Performance evaluation of recycled aggregate concrete-filled steel tubes under different loading conditions: database analysis and modelling. J Build Eng 30:101308. https://doi.org/10.1016/j.jobe.2020.101308

    Article  Google Scholar 

  32. Yang YF, Man LH (2006) Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings. Steel Compos Struct 6:257–284. https://doi.org/10.12989/scs.2006.6.3.257

    Article  Google Scholar 

  33. Han L-H, Lu H, Yao G-H, Liao F-Y (2006) Further study on the flexural behaviour of concrete-filled steel tubes. J Constr Steel Res 62:554–565. https://doi.org/10.1016/j.jcsr.2005.09.002

    Article  Google Scholar 

  34. Ding FX, Yu ZW (2006) Pure bending properties of self-compacting concrete filled circular steel tube. J Traffic Transport Eng 6:63–68

    Google Scholar 

  35. Tao Z, Han L-H, Wang L-L (2007) Compressive and flexural behaviour of CFRP-repaired concrete-filled steel tubes after exposure to fire. J Constr Steel Res 63:1116–1126. https://doi.org/10.1016/j.jcsr.2006.09.007

    Article  Google Scholar 

  36. Chitawadagi MV, Narasimhan MC (2009) Strength deformation behaviour of circular concrete filled steel tubes subjected to pure bending. J Constr Steel Res 65:1836–1845. https://doi.org/10.1016/j.jcsr.2009.04.006

    Article  Google Scholar 

  37. Lu H, Han L-HH, Zhao X-LL (2009) Analytical behavior of circular concrete-filled thin-walled steel tubes subjected to bending. Thin Walled Struct 47:346–358. https://doi.org/10.1016/j.tws.2008.07.004

    Article  Google Scholar 

  38. Al Zand AW, Badaruzzaman WHW, Tawfeeq WM (2020) New empirical methods for predicting flexural capacity and stiffness of CFST beam. J Constr Steel Res 164:105778. https://doi.org/10.1016/j.jcsr.2019.105778

    Article  Google Scholar 

  39. AISC-LRFD (1999) Load and resistance factor design specification for structural steel buildings. American Institute of Steel Construction Inc, Chicago

    Google Scholar 

  40. EC4 (2004) European Committee for Standardization. Design of composite steel and concrete structures—Part 1.1. General rules and rules for buildings, Brussels

  41. AISC (2010) Specification for structural steel buildings. Chicago

  42. AIJ-1997 (1997) Architectural Institute of Japan. Recommendations for design and construction of concrete filled steel tubular structures

  43. BS5400 (2005) British Standard Institute, Steel, Concrete and Composite Bridges in Part 5. Code of Practice for the design of Composite Bridges, London (UK)

  44. Lin C, Li T, Chen S et al (2020) Structural identification in long-term deformation characteristic of dam foundation using meta-heuristic optimization techniques. Adv Eng Softw 148:102870. https://doi.org/10.1016/j.advengsoft.2020.102870

    Article  Google Scholar 

  45. Yaseen ZM, Deo RC, Hilal A et al (2018) Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv Eng Softw 115:112–125. https://doi.org/10.1016/j.advengsoft.2017.09.004

    Article  Google Scholar 

  46. Ashrafian A, Shokri F, Amiri MJT et al (2020) Compressive strength of foamed cellular lightweight concrete simulation: new development of hybrid artificial intelligence model. Constr Build Mater 230:117048

    Article  Google Scholar 

  47. Keshtegar B, Bagheri M, Yaseen ZM (2019) Shear strength of steel fiber-unconfined reinforced concrete beam simulation: application of novel intelligent model. Compos Struct 212:230–242. https://doi.org/10.1016/j.compstruct.2019.01.004

    Article  Google Scholar 

  48. Alwanas AAH, Al-Musawi AA, Salih SQ et al (2019) Load-carrying capacity and mode failure simulation of beam-column joint connection: application of self-tuning machine learning model. Eng Struct 194:220–229. https://doi.org/10.1016/j.engstruct.2019.05.048

    Article  Google Scholar 

  49. Yaseen ZM, Tran MT, Kim S et al (2018) Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: a new approach. Eng Struct 177:244–255. https://doi.org/10.1016/j.engstruct.2018.09.074

    Article  Google Scholar 

  50. Adeli H, Jiang X (2006) Dynamic fuzzy wavelet neural network model for structural system identification. J Struct Eng 132:102–111. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(102)

    Article  Google Scholar 

  51. Jiang X, Adeli H (2005) Dynamic wavelet neural network for nonlinear identification of highrise buildings. Comput Aided Civ Infrastruct Eng 20:316–330. https://doi.org/10.1111/j.1467-8667.2005.00399.x

    Article  Google Scholar 

  52. Jalal M, Grasley Z, Gurganus C, Bullard JW (2020) A new nonlinear formulation-based prediction approach using artificial neural network (ANN) model for rubberized cement composite. Eng Comput. https://doi.org/10.1007/s00366-020-01054-3

    Article  Google Scholar 

  53. Kubat M (1999) Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. Knowl Eng Rev 13:409–412. https://doi.org/10.1017/s0269888998214044

    Article  Google Scholar 

  54. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2:303–314. https://doi.org/10.1007/BF02551274

    Article  MathSciNet  MATH  Google Scholar 

  55. Islam J, Vasant PM, Negash BM et al (2020) A holistic review on artificial intelligence techniques for well placement optimization problem. Adv Eng Softw 141:102767. https://doi.org/10.1016/j.advengsoft.2019.102767

    Article  Google Scholar 

  56. Koopialipoor M, Fallah A, Armaghani DJ et al (2019) Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Eng Comput 35:243–256. https://doi.org/10.1007/s00366-018-0596-4

    Article  Google Scholar 

  57. Banyhussan QS, Hanoon AN, Al-Dahawi A et al (2020) Development of gravitational search algorithm model for predicting packing density of cementitious pastes. J Build Eng 27:100946. https://doi.org/10.1016/j.jobe.2019.100946

    Article  Google Scholar 

  58. Hanoon AN, Jaafar MS, Hejazi F, Aziz FNAA (2017) Strut-and-tie model for externally bonded CFRP-strengthened reinforced concrete deep beams based on particle swarm optimization algorithm: CFRP debonding and rupture. Constr Build Mater 147:428–447. https://doi.org/10.1016/j.conbuildmat.2017.04.094

    Article  Google Scholar 

  59. Mai SH, Ben Seghier MEA, Nguyen PL et al (2020) A hybrid model for predicting the axial compression capacity of square concrete-filled steel tubular columns. Eng Comput 1–18. https://doi.org/10.1007/s00366-020-01104-w

  60. Hecht-Niselen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the international conference on neural networks. IEEE Press New York, pp 11–14

  61. Belman-Flores JM, Ledesma SE, Garcia MG et al (2013) Analysis of a variable speed vapor compression system using artificial neural networks. Expert Syst Appl 40:4362–4369. https://doi.org/10.1016/j.eswa.2013.01.015

    Article  Google Scholar 

  62. Al-Musawi AA, Alwanas AAH, Salih SQ et al (2020) Shear strength of SFRCB without stirrups simulation: implementation of hybrid artificial intelligence model. Eng Comput 36:1–11. https://doi.org/10.1007/s00366-018-0681-8

    Article  Google Scholar 

  63. Chen XL, Fu JP, Yao JL, Gan JF (2018) Prediction of shear strength for squat RC walls using a hybrid ANN–PSO model. Eng Comput. https://doi.org/10.1007/s00366-017-0547-5

    Article  Google Scholar 

  64. Kaveh A, Talatahari S (2012) A hybrid CSS and PSO algorithm for optimal design of structures. Struct Eng Mech 42:783–797. https://doi.org/10.12989/sem.2012.42.6.783

    Article  Google Scholar 

  65. Dang NM, Tran Anh D, Dang TD (2019) ANN optimized by PSO and Firefly algorithms for predicting scour depths around bridge piers. Eng Comput. https://doi.org/10.1007/s00366-019-00824-y

    Article  Google Scholar 

  66. Gandomi AH, Alavi AH, Mousavi M, Tabatabaei SM (2011) A hybrid computational approach to derive new ground-motion prediction equations. Eng Appl Artif Intell 24:717–732. https://doi.org/10.1016/j.engappai.2011.01.005

    Article  Google Scholar 

  67. Frank IE, Todeschini R (1994) The data analysis handbook, vol 14. Elsevier Science Ltd, New York

    Google Scholar 

  68. Srinivas V, Ramanjaneyulu K (2007) An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks. Adv Eng Softw 38:475–487. https://doi.org/10.1016/j.advengsoft.2006.09.016

    Article  Google Scholar 

  69. Jang H, Topal E (2014) A review of soft computing technology applications in several mining problems. Appl Soft Comput J 22:638–651. https://doi.org/10.1016/j.asoc.2014.05.019

    Article  Google Scholar 

  70. Gholami M, Cai N, Brennan RW (2013) An artificial neural network approach to the problem of wireless sensors network localization. Robot Comput Integr Manuf 29:96–109. https://doi.org/10.1016/j.rcim.2012.07.006

    Article  Google Scholar 

  71. Payal A, Rai C, Reddy R (2014) Artificial neural networks for developing localization framework in wireless sensor networks. In: International conference on data mining and intelligent computing (ICDMIC), pp 1–6. https://doi.org/10.1109/ICDMIC.2014.6954228

  72. Hakim SJS, Abdul Razak H, Ravanfar SA (2015) Fault diagnosis on beam-like structures from modal parameters using artificial neural networks. Meas J Int Meas Confed 76:45–61. https://doi.org/10.1016/j.measurement.2015.08.021

    Article  Google Scholar 

  73. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  74. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 39-43. https://doi.org/10.1109/MHS.1995.494215

  75. Ledesma S, Torres M, Hernández D, et al (2007) Temperature cycling on simulated annealing for neural network learning BT - MICAI 2007: advances in artificial intelligence. In: Gelbukh A, Kuri Morales ÁF (eds). Springer Berlin Heidelberg, Berlin, Heidelberg, pp 161–171. https://doi.org/10.1007/978-3-540-76631-5_16

  76. Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct. https://doi.org/10.1016/j.compstruc.2011.08.002

    Article  Google Scholar 

  77. Hanoon AN, Jaafar MS, Hejazi F, Abdul Aziz FNA (2017) Energy absorption evaluation of reinforced concrete beams under various loading rates based on particle swarm optimization technique. Eng Optim 49:1483–1501. https://doi.org/10.1080/0305215X.2016.1256729

    Article  Google Scholar 

  78. Smith GN (1986) Probability statistics civil engineering. Collins, London

    Google Scholar 

  79. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276. https://doi.org/10.1016/s1093-3263(01)00123-1

    Article  Google Scholar 

  80. Gandomi AH, Alavi AH (2013) Expression programming techniques for formulation of structural engineering systems. In: Metaheuristic applications in structures and infrastructures, pp 439–455. https://doi.org/10.1016/B978-0-12-398364-0.00018-8

  81. Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27:302–313. https://doi.org/10.1002/qsar.200710043

    Article  Google Scholar 

  82. Bagheri M, Bagheri M, Gandomi AH, Golbraikh A (2012) Simple yet accurate prediction method for sublimation enthalpies of organic contaminants using their molecular structure. Thermochim Acta 543:96–106. https://doi.org/10.1016/j.tca.2012.05.008

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for the research provided by the University of Baghdad and the Universiti Kebangsaan Malaysia (UKM) with project Grant GGPM-2020-001 (Pusat Pengurusan Penyelidikan dan Instrumentasi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed W. Al Zand.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanoon, A.N., Al Zand, A.W. & Yaseen, Z.M. Designing new hybrid artificial intelligence model for CFST beam flexural performance prediction. Engineering with Computers 38, 3109–3135 (2022). https://doi.org/10.1007/s00366-021-01325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01325-7

Keywords

Navigation