Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multi-level cross entropy optimizer (MCEO): an evolutionary optimization algorithm for engineering problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This work proposes a new meta-heuristic optimization algorithm called multi-level cross entropy Optimizer (MCEO). This algorithm is conducted by combination of a group of cross entropy operators. Situations, with a low probability for optimal point are searched with high speed, and also, locations with a high probability for existence of optimal point are investigated with a low speed and high accuracy. The algorithm is then benchmarked on 13 well-known test functions in high dimension spaces (100 dimensions), and the answers are verified by a comparative study with thermal exchange optimization, selfish herds optimization, water evaporation optimization, Moth-Flame optimization, Flower Pollination Algorithm, states of matter search, and gray wolf optimizer. The results indicate that the MCEO algorithm can provide very competitive results in comparison to these well-known meta-heuristics in a similar condition (in term of NFEs). The paper also considers solving three classical engineering design problems (tension/compression spring, welded beam, and pressure vessel designs) and presents a genuine application of the proposed method to the field of dam engineering. The results of the classical engineering design problems and the real application validate that the proposed algorithm is applicable to challenging difficulties with unknown search spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Kaveh A (2014) Advances in Metaheuristic algorithms for optimal design of structures. Springer International Publishing, Basel

    Book  MATH  Google Scholar 

  2. Goldberg DE, Holland JH (1968) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Google Scholar 

  3. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  4. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT press, Cambridge

    MATH  Google Scholar 

  5. Rechenberg I (1994) Evolution strategy. Comput Intell 1:147–159

    Google Scholar 

  6. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York

  7. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  8. Yang XS (2012) Flower pollination algorithm for global optimization. Confrence paper. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 7445. LNCS, pp 240–249. https://doi.org/10.1007/978-3-642-32894-7_27

  9. Cuevas E, Echavarría A, Ramírez-Ortegón MA (2014) An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Appl Intell 40(2):256–272

    Article  Google Scholar 

  10. Banichuk NV, Neittaanmäki PJ (2010) Structural optimization with uncertainties. Solid Mechanics its Applications, vol 162, Springer, Netherlands

  11. Webster B, Bernhard PJ (2003) A local search optimization algorithm based on natural principles of gravitation. Technical report. Florida Institute of Technology. #CS-2003-10

  12. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289

    Article  MATH  Google Scholar 

  13. Formato RA (2007) Central force optimization: A new metaheuristic with applications in applied electromagnetics. Progr Electromagn Res PIER 77:425–491

    Article  Google Scholar 

  14. Lam AYS, Li VOK (2010) Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evol Comput 14(3):381–399

    Article  Google Scholar 

  15. Hatamlou A (2013) Black hole: A new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  16. Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. Adv Nat Comput Pt 2 4222:264–273

    Google Scholar 

  17. Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. arXiv:1208.2214

  18. Varaee H, Reza M (2016) Engineering optimization based on ideal gas molecular movement algorithm. Eng Comput 33:71–93

    Article  Google Scholar 

  19. Kaveh A, Bakhshpoori T (2016) Water Evaporation Optimization: A novel physically inspired optimization algorithm. Comput Struct 167:69–85

    Article  Google Scholar 

  20. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv Eng Softw 110:69–84

    Article  Google Scholar 

  21. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Sixth International Symposium on Micro Machine and Human Science on IEEE. Japan. https://doi.org/10.1109/MHS.1995.494215

  22. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization.” IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  23. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, Technical report, Erciyes university

  24. Nesahat M, Sepidnam G, Sargolzaei M, Toosi A N (2014) Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif Intell Rev. 42(4):965–997

  25. Roth M (2006) Termite: A swarm intelligent routing algorithm for mobile wireless ad-hoc networks. Stigmergic Optimization. Springer, Berlin, Heidelberg, pp 155–184

    Google Scholar 

  26. Mucherino A, Seref O (2007) Monkey search: A novel metaheuristic search for global optimization. AIP Conf Proc. 953(1):162–173. http://doi.org/10.1063/1.2817338

  27. Gandomi AH, Yang X (2013) Cuckoo search algorithm : a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35

    Article  Google Scholar 

  28. Shiqin Y, Jianjun J, Guangxing Y (2009) A dolphin partner optimization. In: Intelligent Systems. GCIS’09. WRI Global Congress on, vol 1, IEEE, Washington. pp 124–128

  29. Yang X-S (2010) Firefly Algorithm, Stochastic Test Functions and Design Optimisation. Int J Bio-Inspired Comput. 2(2):78–84

  30. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: Ray Optimization. Comput Struct 112–113:283–294

    Article  Google Scholar 

  31. Kaveh A, Farhoudi N (2013) A new optimization method: Dolphin echolocation. Adv Eng Softw 59:53–70

    Article  Google Scholar 

  32. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  33. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  34. Kaveh A, Ghazaan MI (2017) A new meta-heuristic algorithm : vibrating particles system. Sci Iran 24(2):1–32

    Google Scholar 

  35. Fausto F, Cuevas E, Valdivia A, González A (2017) BioSystems A global optimization algorithm inspired in the behavior of selfish herds. BioSystems 160:39–55

    Article  Google Scholar 

  36. Kaveh A, Zolghadr A (2017) Cyclical parthenogenesis algorithm for guided modal strain energy based structural damage detection. Appl Soft Comput J 57:250–264

    Article  Google Scholar 

  37. Rubinsten RY, Kroese DP (2004) The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation, and machine learning. Springer, New York

    Book  Google Scholar 

  38. Belmudes F, Ernst D, Wehenkel L (2008) Cross-entropy based rare-event simulation for the identification of dangerous events in power system. in: Probabilistic Methods Applied to Power Systems, 2008. PMAPS’08. Proceedings of the 10th International Conference on IEEE, Puerto Rico. pp 1–7. Print ISBN: 978-1-9343-2521-6

  39. Lindell IV, Sihvola AH, Hänninen I (2006) Realization of perfectly anisotropic impedance boundary. Eur Space Agency. 626:1131–1136. https://doi.org/10.1109/EUCAP.2006.4584717

  40. Kobilarov M (2012) Cross-entropy randomized motion planning. In: Robotics: Science and Systems VII. pp 153–160. https://doi.org/10.15607/RSS.2011.VII.022

  41. Kothari RP, Kroese DP (2009) Optimal generation expansion planning via the cross-entropy metho. In: Simulation Conference (WSC) on IEEE, Proceeding of the 2009 winter. pp 1482–1491. https://doi.org/10.1109/WSC.2009.5429296

  42. Sani A (2009) Stochastic Modelling and Intervention of the Spread of HIV/AIDS. Ph.D. thesis, The University of Queensland, School of Physical Science, Brisbane

  43. Kroese DP, Porotsky S, Rubinstein RY (2006) The cross-entropy method for continuous multi-extremal optimization. Methodol Comput Appl Prob 8(3):383–407

    Article  MathSciNet  MATH  Google Scholar 

  44. Szabó Z, Póczos B, Lőrincz A (2006) Cross-Entropy Optimization for Independent Process Analysis. IIn: International Conference on Independent Component Analysis and Signal Separation ICA 2006: Independent Component Analysis and Blind Signal Separation. vol 3889, Springer, Berlin. pp 909–916

  45. Busnoniu L, Babuska R, De Schutter B, Ernst D (2010) Reinforcement learning and dynamic programming using function approximators. Taylor & Francis Group, New York

    Book  Google Scholar 

  46. Kroese DP, Rubinstein RY, Taimre T (2007) Application of the cross-entropy method to clustering and vector quantization. J Global Optim 37(1):137–157

    Article  MATH  Google Scholar 

  47. Liu Z, Doucet A, Singh SS (2004) The cross-entropy method for blind multiuser detection. In: Information Theory. ISIT Proceedings. International Symposium on IEEE, p. 510. https://doi.org/10.1109/ISIT.2004.1365547

  48. Pihur V, Datta S, Datta S (2007) Weighted rank aggregation of cluster validation measures: a monte carlo cross-entropy approach. Bioinformatics 23(13):1607–1615

    Article  Google Scholar 

  49. Alon G, Kroese DP, Raviv T, Rubinstein RY (2005) Application of the cross-entropy method to the buffer allocation problem in a simulation-based environment. Ann Oper Res 134(1):137–151

    Article  MathSciNet  MATH  Google Scholar 

  50. Cohen I, Golany B, Shtub A (2007) Resource allocation in stochastic, finite-capacity, multi-project systems through the cross entropy methodology. J Sched 10(3):181–193

    Article  MathSciNet  MATH  Google Scholar 

  51. Kroese DP, Hui KP, Nariai S (2007) Network reliability optimization via the cross-entropy method.” IEEE Trans Reliab 56(2):275–287

    Article  Google Scholar 

  52. Fu C, Wang H, Zhu L (2005) Solving the vehicle routing problem with stochastic demands and customers. In: Parallel and distributed computing, applications and technologies, PDCAT Proceedings, vol 2005, pp 736–738

  53. Ernst D, Glavic M, Stan G-B, Mannor S, Wehenkel L (2007) The cross-entropy method for power system combinatorial optimization problems. In: Power Tech, IEEE Lausanne, pp 1290–1295. https://doi.org/10.1109/PCT.2007.4538502

  54. Lőrincz A, Palotai Z, Szirtes G (2008) Spike-based cross-entropy method for reconstruction. Neurocomputing 71(16):3635–3639

  55. Yang X, Press L (2010) Nature-Inspired Metaheuristic Algorithms Second Edition. University of Cambridge, Cambridge

    Google Scholar 

  56. Tung YK, Yen BC, Melching CS (2013) Reliability assessment and risk analysis. McGraw-Hill, New York

  57. Haldar A, Mahdevan S (2010) Probability, reliability, and statistical methods in engineering design. Wiley, New York

    Google Scholar 

  58. Dai H, Wang W (2009) Application of low discrepancy sampling method in structural reliability analysis. Struct Saf 31:55–64

    Article  Google Scholar 

  59. Rao SS (2009) Engineering optimization: theory and practice, 4 edn. Wiley, New York

    Book  Google Scholar 

  60. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99

    Article  Google Scholar 

  61. Mezura-Montes E, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37(4):443–473

    Article  MathSciNet  MATH  Google Scholar 

  62. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127

    Article  Google Scholar 

  63. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38):3902–3933

    Article  MATH  Google Scholar 

  64. Huang F, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356

    MathSciNet  MATH  Google Scholar 

  65. Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16(3):193–203

    Article  Google Scholar 

  66. Coello Coello CA, Becerra RL (2004) Efficient evolutionary optimization through the use of a cultural algorithm. Eng Optim 36(2):219–236

    Article  Google Scholar 

  67. He Q, Wang L (2007) A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl Math Comput 186(2):1407–1422

    MathSciNet  MATH  Google Scholar 

  68. Zahara E, Kao Y-T (2009) Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst Appl 36(2):3880–3886

    Article  Google Scholar 

  69. L dos Santos Coelho (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst Appl 37(2):1676–1683

    Article  Google Scholar 

  70. Lampinen J (2002) A constraint handling approach for the differential evolution algorithm. In: Evolutionary Computation, CEC’02. Proceedings of the 2002 Congress, vol 2, pp 1468–1473

  71. Wang L, Li L (2010) An effective differential evolution with level comparison for constrained engineering design. Struct Multidiscip Optim 41(6):947–963

    Article  Google Scholar 

  72. Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178(15):3043–3074

    Article  Google Scholar 

  73. Wang Y, Cai Z, Zhou Y, Fan Z (2009) Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Struct Multidiscip Optim 37(4):395–413

    Article  Google Scholar 

  74. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640

    Article  Google Scholar 

  75. Ray T, Liew KM (2003) Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7(4):386–396

    Article  Google Scholar 

  76. Mezura-Montes E, Coello CAC (2005) Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican International Conference on Artificial Intelligence. vol 3789, Springer, Berlin, pp 652–662

  77. Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization. In: International Fuzzy Systems Association World Congress. IFSA 2007: Foundations of fuzzy logic and soft computing, vol 4529. Springer, New York, pp 789–798

  78. Kashan AH (2011) An efficient algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA), Comput Aided Design 43(12):1769–1792

    Article  Google Scholar 

  79. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166

    Article  Google Scholar 

  80. Yang X-S (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley, New York

    Book  Google Scholar 

  81. Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using geometric programming. J Eng Ind 98(3):1021–1025

    Article  Google Scholar 

  82. Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput 27(1):155–182

    Article  MATH  Google Scholar 

  83. Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Design 116(2):405–411

    Article  Google Scholar 

  84. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223–229

    Article  Google Scholar 

  85. Duncan W, Huntley C, Hokenstrom J, Cudworth A, McDaniel T (1987) Design of small dams. A water resources technical publication. Final report. Engineering and Research Center, Bureau of Reclamation, Denver

    Google Scholar 

  86. Kaveh A, Zakian P (2015) “Stability Based Optimum Design of Concrete Gravity Dam Using Css, Cbo and Ecbo Algorithms. Iran Univ Sci Technol 5(4):419–431

    Google Scholar 

  87. Akbari J, Ahmadi MT, Moharrami H (2011) Advances in concrete arch dams shape optimization. Appl Math Model 35(7):3316–3333

    Article  MATH  Google Scholar 

  88. Mahani AS, Shojaee S, Salajegheh E, Khatibinia M (2015) Hybridizing two-stage meta-heuristic optimization model with weighted least squares support vector machine for optimal shape of double-arch dams. Appl Soft Comput 27:205–218

    Article  Google Scholar 

  89. Cai X, Wu Y, Yi J, Ming Y (2011) Research on shape optimization of CSG dams. Water Sci Eng 4(4):445–454

    Google Scholar 

  90. Ahmed GL, Srivastava DK, Rani D (2013) Optimization–simulation models for yield assessment of a single reservoir system. J Indian Water Res Soc 33(4):9–16

    Google Scholar 

  91. Gandomi AH, Yang X-S, Talatahari S, Alavi AH (2013)Metaheuristic applications in structures and infrastructures. Newnes. Book. Elsevier. ISBN: 9780123983640

  92. Gholizadeh S, Seyedpoor SM (2011) Shape optimization of arch dams by metaheuristics and neural networks for frequency constraints.” Sci Iran 18(5):1020–1027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Azizyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MiarNaeimi, F., Azizyan, G. & Rashki, M. Multi-level cross entropy optimizer (MCEO): an evolutionary optimization algorithm for engineering problems. Engineering with Computers 34, 719–739 (2018). https://doi.org/10.1007/s00366-017-0569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-017-0569-z

Keywords

Navigation