Abstract
R system is a mathematical model for analyzing bio-chemical reactions. This paper proposes a framework on the control of R systems. In particular, we develop a theory of monotone control of R systems, inspired from the experimental requirement in the design of molecular computing systems. We show that any computation executed by a pair of an R system and its control system can be simulated by monotone control with only two control symbols.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)
Azimi, S., Gratie, C., Ivanov, S., Manzoni, S., Petre, I., Porreca, A.E.: Complexity of model checking for reaction systems. Theor. Comput. Sci. 623, 102–113 (2016)
Azimi, S., Gratie, C., Ivanov, S., Petre, I.: Dependency graphs and mass conservation in reaction systems. Theor. Comput. Sci. 598, 23–39 (2015)
Azimi, S., Iancu, B., Petre, I.: Reaction systems models for the heat shock response. Fundamenta Informaticae 131, 1–14 (2014)
Azimi, S., Panchal, C., Czeizler, E., Petre, I.: Reaction systems models for the self-assembly of intermediate filaments. Ann. Univ. Bucharest LXI I(2), 9–24 (2015)
Azimi, S., Panchal, C., Czeizler, E., Petre, I.: Multi-stability, limit cycles, and period-doubling bifurcation with reaction systems. Int. J. Found. Comput. Sci. 28, 1007–1020 (2017)
Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)
Bottoni, P., Labella, A., Rozenberg, G.: Networks of reaction systems. Int. J. Found. Comput. Sci. 31, 53–71 (2020)
Corolli, L., Maj, C., Marini, F., Besozzi, D., Mauri, G.: An excursion in reaction systems: from computer science to biology. Theor Comput Sci 454, 95–108 (2012)
Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Reachability in resource-bounded reaction systems. In: Dediu, A.H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) Language and automata theory and applications. LATA 2016. Lecture Notes in Computer Science, vol 9618, pp. 592–602. Springer, Cham (2016)
Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Complexity of dynamics of reaction systems. Inf. Comput. 267, 96–109 (2019)
Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Evolving reaction systems. Theor. Comput. Sci. 682, 79–99 (2017)
Ehrenfeucht, A., Petre, I., Rozenberg, G.: Reaction systems: a model of computation inspired by the functioning of the living cell. In: Konstantinidis, S., Moreira, N., Reis, R., Shallit, J. (eds.) The Role of Theory in Computer Science: Essays Dedicated to Janusz Brzozowski, pp. 1–32. World Scientific, Singapore (2017)
Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75, 263–280 (2007)
Ehrenfeucht, A., Rozenberg, G.: Standard and ordered zoom structures. Theor. Comput. Sci. 608, 4–15 (2015)
Formenti, A., Manzoni, L., Porreca, A.E.: Cycles and global attractors of reaction systems. In: Jurgensen, H., Karhumaki, J., Okhotin, A. (eds.) Descriptional Complexity of Formal Systems. Lecture Notes in Computer Science, vol. 8614, pp. 114–125. Springer, Cham (2014)
Fujimoto, K., Toyosato, K., Nakamura, S., Sakamoto, T.: RNA Fluorescence in situ hybridization using 3-cyanovinylcarbazole modified oligodeoxynucleotides as photo-cross-linkable probes. Bioorg. Med. Chem. Lett. 26, 5312–5314 (2016)
Fujimoto, K., Sasago, S., Mihara, J., Nakamura, S.: DNA photo-cross-linking using pyranocarbazole and visible light. Org. Lett. 20, 2802–2805 (2018)
Hagiya, M., Wang, S., Kawamata, I., Murata, S., Isokawa, T., Peper, F., Imai, K.: On DNA-based gellular automata, unconventional computation and natural computation. In: 13th International Conference, UCNC 2014. Lecture Notes in Computer Science, vol. 8553, pp. 177–189 (2014)
Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviours. Bull. Math. Biol. 49, 737–759 (1987)
Ivanov, S., Petre, I.: Controllability of reaction systems. J. Membr. Comput. 2, 290–302 (2020)
Kimoto, N., Komiya, K., Fujimoto, K., Kobayashi, S.: Monotonically controlling right linear grammars with unknown behaviors to output a target string. Theor. Comput. Sci. 777, 387–408 (2019)
Kimoto, N., Nakamura, S., Komiya, K., Fujimoto, K., Kobayashi, S.: Reducing control alphabet size for the control of right linear grammars with unknown behaviors. Theor. Comput. Sci. 862, 193–213 (2020)
Kobayashi, H., Choyke, P.L.: Near-infrared photoimmunotherapy of cancer. Acc. Chem. Res. 52, 2332–2339 (2019)
Kolch, W., Halasz, M., Granovskaya, M., Kholodenko, B.N.: The dynamic control of signal transduction networks in cancer cells. Nat. Rev. Cancer 15, 515–527 (2015)
Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Controllability of complex networks. Nature 473, 167–173 (2011)
Komiya, K., Yamamura, M., Rose, J.A.: Quantitative design and experimental validation for a single-molecule DNA nanodevice transformable among three structural states. Nucl. Acids Res. 38, 4539–4546 (2010)
Lal, S., Clare, S.E., Halas, N.J.: Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008)
Liu, N., Dai, M., Saka, S.K., Yin, P.: Super-resolution labeling with action-PAINT. Nat. Chem. 11, 1001–1008 (2019)
Mȩski, A., Koutrfy, M., Penczek, W.: Verification of linear-time temporal properties for reaction systems with discrete concentrations. Fundamenta Informaticae 154, 289–306 (2017)
Mȩski, A., Penczek, W., Rozenberg, G.: Model checking temporal properties of reaction systems. Inf. Sci. 313, 22–42 (2015)
Nakamura, S., Hashimoto, H., Kobayashi, S., Fujimoto, K.: Photochemical acceleration of DNA strand displacement using ultrafast DNA photo-cross-linking. ChemBioChem 18(20), 1984–1989 (2017)
Narberhaus, F., Waldminghaus, T., Chowdhury, S.: RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006)
Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)
Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)
Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011)
Rogers, W.B., Manoharan, V.N.: Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015)
Rose, J., Komiya, K., Kobayashi, S.: Engineering multistate DNA molecules: a tunable thermal band-pass filter. Micro Nano Lett. 11(10), 595–601 (2016)
Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288, 1223–1226 (2000)
Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Sugiyama, H., Hagiya, M.: State transitions by molecules. BioSystems 52(1–3), 81–91 (1999)
Salomaa, A.: Functions and sequences generated by reaction systems. Theor. Comput. Sci. 466, 87–96 (2012)
Salomaa, A.: Minimal and almost minimal reaction systems. Nat. Comput. 12, 369–376 (2013)
Salomaa, A.: Tow-step simulations of reaction systems by minimal ones. Acta Cybernetica 22, 247–257 (2015)
Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. PNAS 107(12), 5393–5398 (2010)
Stojanovic, M.N., Stefanovic, D.: A deoxyribozyme-based molecular automaton. Nat. Biotechnol. 21, 1069–1074 (2003)
Teh, W.C., Atanasiu, A.: Simulations of reaction systems by strictly minimal ones. J. Membr. Comput. 2, 162–170 (2020)
Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: some theory and experiments. DNA Based Comput. II, 191–213 (1998)
Yin, P., Choi, H., Calvert, C., Pierce, N.: Programming biomolecular self-assembly pathways. Nature 451(17), 318–323 (2008)
Yoshimura, Y., Fujimoto, K.: Ultrafast reversible photo-cross-linking reaction: toward in situ DNA manipulation. Org. Lett. 10(15), 3227–3230 (2008)
Woods, D., Doty, D., Myhrvold, C., Hui, J., Zhou, F., Yin, P., Winfree, E.: Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature 567, 366–372 (2019)
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Research (B) (no. 19H04204) and (C) (no. 19K12216) of Japan Society of Promotion of Science. This work was also supported by Grant-in-Aid for Transformative Research Areas (A) 20H05971 of Japan Society of Promotion of Science.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Yako, R., Ise, D., Komiya, K. et al. Monotone Control of R Systems. New Gener. Comput. 40, 623–657 (2022). https://doi.org/10.1007/s00354-022-00166-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00354-022-00166-2