Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Towards a Methodology for Field Work in Computational Creativity

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

This work proposes a methodology for conducting field work in computational creativity, referring to field work as the effort of actively making a system or its artifacts widely accessible outside the academic world. Field work aims to study how creative computer agents and/or their products influence society, and how the dynamics that arise from the interaction between people and those inventive machines or their artifacts can inform the design of computational creativity methods, systems and artefacts. In this paper, we reflect on our experiences making our systems ALYSIA and MEXICA broadly available. In the case of ALYSIA, the system itself was made accessible, whereas MEXICA’s artifacts (stories) were shared through a traditionally published book for a broad readership. We then propose a five step methodology for effectively conducting field work in Computational Creativity. The participation of the computational creativity community is essential to test and enrich this methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://www.aaronshome.com/aaron/biography/index.html accessed 24 July 2020.

  2. https://www.abdn.ac.uk/ncs/departments/computing-science/standup-315.php accessed 20 August 2020.

  3. https://joking.abdn.ac.uk/ accessed 20 August2020.

  4. https://www.newscientist.com/article/mg23231043-500-machine-learning-lets-computer-create-melodies-to-fit-any-lyrics/ accessed 25 July 2020.

  5. An unpublished manuscript on the system included a user study that compared ALYSIA's rankings of vocal melodies to how humans would rank the same melodies. While helpful, the insights resulting from that study were limited in scope, particularly when compared with the wealth of diverse feedback received when taking ALYSIA to broader audiences.

  6. https://counterpathpress.org/crossborders-the-aesthetics-of-migration-at-counterpath-and-cu-boulder-november-9-and-10-2018 accessed 25 July 2020.

  7. https://livestream.com/hammermuseum/events/8632947 accessed 25 July 2020.

  8. https://aiforgood.itu.int/2019-event/ accessed 25 July 2020.

References

  1. Jordanous, A.: A standardised procedure for evaluating creative systems: computational creativity evaluation based on what it is to be creative. Cogn. Comput. 4(3), 246–279 (2012)

    Article  Google Scholar 

  2. Ackerman, M., Loker, D.: Algorithmic songwriting with Alysia. In: International conference on evolutionary and biologically inspired music and art, pp. 1–16 2017

  3. Pérez y Pérez, R., Sharples, M.: Mexica: a computer model of a cognitive account of creative writing. J. Exp. Theor. Artif. Intell. 13(2), 119–139 (2001)

    Article  Google Scholar 

  4. Robson, C., McCartan, K.: Real world research, 4th edn. Wiley, Hoboken (2016)

    Google Scholar 

  5. Brent, E.: Designing social science research with expert systems. Anthropol. Q. 62(3), 121–130 (1989). https://doi.org/10.2307/3317452

    Article  Google Scholar 

  6. Brent, E., Anderson, R.: Computer applications in the social science. McGraw-Hill, New York (1990)

    Google Scholar 

  7. Köse, U., Pavaloiu, A.: A cross-cultural perspective on the societal impact of artificial intelligence. In: The 6th International virtual conference on advanced scientific results. https://doi.org/10.18638/scieconf.2018.6.1.530 (2018)

  8. Alvarez, R.M. (ed.): Computational social science, discovery and prediction. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  9. Hofman, J., Sharma, A., Watts, D.J.: Prediction and explanation in social systems. Science 355, 486–488 (2017). https://doi.org/10.1126/science.aal3856

    Article  Google Scholar 

  10. Hughes, J.A., King, V., Rodden, T., Andersen, H.J.: The role of ethnography in interactive systems design. Interactions 2(2), 56–65 (1995). https://doi.org/10.1145/205350.205358

    Article  Google Scholar 

  11. Harrison, S., Sengers, P., Tatar, D.: The three paradigms of HCI. In: Alt. Chi. session at the SIGCHI conference on human factors in computing systems. https://people.cs.vt.edu/~srh/Downloads/TheThreeParadigmsofHCI.pdf (2007). Accessed 20 July 2020

  12. Prpa, M., Fdili-Aloui, S., Schiphorst, T., Pasquier,P.: Articulating experience: reflections from experts applying micro-phenomenology to design research in HCI. In: Proceedings of the ACM CHI conference on human factors in computing systems, pp. 1–14. https://doi.org/10.1145/3313831.3376664 (2020)

  13. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Van Alystyn, M.: Computational social science. Science 323(5915), 721–723 (2009). https://doi.org/10.1126/science.1167742

    Article  Google Scholar 

  14. Conte, R., Gilbert, N., Bonelli, G., et al.: Manifesto of computational social science. Eur. Phys. J. Spec. Top. 214, 325–346 (2012). https://doi.org/10.1140/epjst/e2012-01697-8

    Article  Google Scholar 

  15. Hernández Sampieri, R., Collado, F., Lucio, P.B.: Metodología de la investigación. McGraw Hill, México (2003)

    Google Scholar 

  16. Guber, R.: La etnografía. Método, campo y reflexividad. Grupo Editorial Norma, Bogota (2001)

    Google Scholar 

  17. Blázquez, G., Liarte Tiloca, A.: De salidas y derivas. Anthropological Groove y “la noche” como espacio etnográfico. Íconos 60, 193–216 (2018). https://doi.org/10.17141/iconos.60.2018.2630

    Article  Google Scholar 

  18. Tashakkori, A., Teddlie, C.: Handbook of mixed methods in social and behavioral research, 2nd edn. SAGE Publications, Thousand Oaks (2010). https://doi.org/10.4135/9781506335193

    Book  Google Scholar 

  19. Johnson, R., Onwuegbuzie, A., Turner, L.: Toward a definition of mixed methods research. J. Mixed Methods Res. 1, 112–133 (2007). https://doi.org/10.1177/1558689806298224

    Article  Google Scholar 

  20. Bryman, A.: Social research methods. Oxford University Press, Oxford (2004)

    Google Scholar 

  21. Pérez y Pérez, R.: Reflexiones sobre las características del trabajo interdisciplinario y sugerencias sobre cómo fomentarlo en el aula universitaria. In: Castellanos, V. (ed.) Estudios Interdisciplinarios en Comunicación, pp. 35–50. UAM Cuajimalpa, México (2015)

    Google Scholar 

  22. Cope, D.: Computers and musical style. A-R Editions, Madison (1991)

    Google Scholar 

  23. García, C.: Algorithmic music—David Cope and EMI. Computer History Museum. https://computerhistory.org/blog/algorithmic-music-david-cope-and-emi/ (2015) Accessed 24 July 2020

  24. Cohen, H.: Parallel to perception: some notes on the problem of machine-generated art. Comput. Stud. 4, 125 (1973)

    Google Scholar 

  25. García, C.: Harold Cohen and AARON—a 40-year collaboration. Computer History Museum. https://computerhistory.org/blog/harold-cohen-and-aaron-a-40-year-collaboration/ (2016) Accessed 24 July 2020

  26. Ritchie, G.D., Manurung, R., Pain, H., Waller, A., Black, R., O'Mara, D.: A practical application of computational humour. In: Cardoso, A., Wiggins, G.A. (eds), Proceedings of the fourth international joint workshop on computational creativity, pp. 91–98. https://www.csd.abdn.ac.uk/~gritchie/papers/ijwcc07.pdf (2007)

  27. Colton, S. Ventura, D.: You can’t know my mind: a festival of computational creativity. In Proceedings of the fifth international conference on computational creativity, p. 351–354 (2014).

  28. Colton, S., Llano, T., Hepworth, R., Charnley, J., Gale, C., Baron, A., Pachet, F., Roy, P., Gervás, P., Collins, N., et al. The beyond the fence musical and computer says show documentary. In: Proceedings of the seventh international conference on computational creativity, p. 311–320 (2016).

  29. Veale, T.: Hallando la creatividad en conceptos en conflicto. In: Pérez, R.P. (ed.) Creatividad Computacional, pp. 65–76. Grupo Editorial Patria, México City (2015)

    Google Scholar 

  30. Hu, J.C.: Machine-made melodies: how humans are creating artistic partnerships with AI. MACH. https://www.nbcnews.com/mach/technology/machine-made-melodies-spotlight-artistic-partnership-between-ai-humans-n698486 (2016) Accessed 24 July 2020

  31. Pérez y Pérez, R.: A computer-based model for collaborative narrative generation. Cogn. Syst. Res. 36, 30–48 (2015)

    Article  Google Scholar 

  32. Pérez y Pérez, R.: Mexica: 20 years—20 stories [20 años—20 historias]. Counterpath, Denver (2017)

    Google Scholar 

  33. Fitch. A.: The computational and the cognitive-social: Talking to Rafael Pérez y Pérez. Blog Los Angeles Review of Books. https://blog.lareviewofbooks.org/interviews/computational-cognitive-social-talking-rafael-perez-y-perez/ (2018) Accessed 25 July 2020

  34. Pérez y Pérez, R.: The computational creativity continuum. In Proceedings of the ninth international conference on computational creativity, pp. 177–184 (2018)

  35. Bhattacharya, K.: Fundamentals of qualitative research: a practical guide. Taylor & Francis, New York (2017)

    Book  Google Scholar 

  36. Ragot, M., Martin, N., Cojean, S.: AI-generated vs. human artworks. A perception bias towards artificial intelligence? In: Extended abstracts of the 2020 CHI conference on human factors in computing systems, pp. 1–10. https://doi.org/10.1145/3334480.3382892 (2020)

  37. Cunha, J.M., Rebelo, S., Martins, P., Machado, P.: Assessing usefulness of a visual blending system: “Pictionary Has Used Image-making New Meaning Logic for Decades. We Don't Need a Computational Platform to Explore the Blending Phenomena”, Do We? In: Proceedings of the 10th international conference on computational creativity, pp. 296–300 (2019).

  38. Norton, D., Heath, D., Ventura, D.: Accounting for bias in the evaluation of creative computational systems: an assessment of darci. In: Proceedings of the sixth international conference on computational creativity, pp. 31–38 (2015).

  39. Moffat, D.C., Kelly, M.: An investigation into people’s bias against computational creativity in music composition. In: Proceedings of the 3rd international joint workshop on computational creativity. https://ccg.doc.gold.ac.uk/ccg_old/events/ecai06/proceedings/Moffat.pdf (2006)

  40. Cheatley, L., Ackerman, M., Pease, A., Moncur, W.: Co-creative songwriting for bereavement support. In: Proceedings of the eleventh international conference on computational creativity (2020).

  41. Braun, V., Clarke, V.: Thematic analysis. In: Cooper, H., Camic, P.M., Long, D.L., Panter, A.T., Rindskopf, D., Sher, K.J. (eds.) APA handbook of research methods in psychology. Research designs: quantitative, qualitative, neuropsychological, and biological, 2nd edn, pp. 57–71. American Psychological Association, Washington (2012)

    Chapter  Google Scholar 

  42. Guest, G., MacQueen, K.M., Namey, E.E.: Applied thematic analysis. Sage publications, Thousand Oaks (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their useful comments and Lee Cheatley for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Pérez y Pérez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez y Pérez, R., Ackerman, M. Towards a Methodology for Field Work in Computational Creativity. New Gener. Comput. 38, 713–737 (2020). https://doi.org/10.1007/s00354-020-00105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-020-00105-z

Keywords

Navigation