Abstract
The spatial distribution pattern of organisms is a basic issue in understanding the mechanisms of community assembly. Although the spatial distributions of animals and plants have been well studied, those of microorganisms are still being debated. In this study, we used a fish gut microecosystem to detect the spatial pattern of microbes, because it can provide a relatively unified and stable environment. Results suggest that the turnover of intestinal bacterial assemblages showed a weak but highly significant negative correlation between similarity and distances in the microbial community, in respect of both grass carp intestinal loci distances and the geographical distance between fish sampling sites. Our results also suggest that intestinal bacterial assemblages responded to differences within the external environment and within different parts of the fish themselves. These results show that some, or possibly all, microbes are restricted in their distribution and that environmental factors are also important influences on the structure of intestinal bacterial assemblages. The fish gut microecosystem is useful in promoting study of the spatial distribution patterns of microorganisms.
Similar content being viewed by others
References
Bell T. 2010. Experimental tests of the bacterial distance-decay relationship. ISME J., 4(11): 1 357–1 365.
Costello E K, Gordon J I, Secor S M, Knight R. 2010. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J., 4(11): 1 375–1 385.
Fenchel T, Finlay B J. 2004. The ubiquity of small species: patterns of local and global diversity. Bioscience, 54(8): 777–784.
Fierer N, Jackson R B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA, 103(3): 626–631.
Finlay B J. 2002. Global dispersal of free-living microbial eukaryote species. Science, 296(5570): 1 061–1 063.
Green J, Bohannan B J M. 2006. Spatial scaling of microbial biodiversity. Trends Ecol. Evol., 21(9): 501–507.
Green J L, Holmes A J, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie A J. 2004. Spatial scaling of microbial eukaryote diversity. Nature, 432(7018): 747–750.
Li G L, Wang Y Q. 1994. Studies on digestive enzymes in the hepatopancreas and intestine of grass carp and common carp. J. Zhanjiang Fish. Coll., 14(1): 34–40. (in Chinese)
Liu Z Y, Wang Z, Xu S Y, Xu L N. 2008. Partial characterization and activity distribution of proteases along the intestine of grass carp, Ctenopharyngodon idella (Val.). Aquacult. Nutr., 14(1): 31–39.
Muegge B D, Kuczynski J, Knights D, Clemente J C, González A, Fontana L, Henrissat B, Knight R, Gordon J I. 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332(6032): 970–974.
Ni D S, Wang J G. 1999. Biology and Diseases of Grass Carp. Science Press, Beijing, China. p.1–15. (in Chinese)
Ni J J, Yu Y H, Zhang T L, Gao L. 2012. Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats. Chin. J. Oceanol. Limnol., 30(5): 757–765.
Pei Z, Bini E J, Yang L, Zhou M, Francois F, Blaser M. 2004. Bacterial biota in the human distal esophagus. Proc. Natl. Acad. Sci. USA, 101(12): 4 250–4 255.
Qin J J, Li R Q, Raes J, Arumugam M, Burgdorf K S, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende D R, Li J H, Xu J M, Li S C, Li D F, Cao J J, Wang B, Liang H Q, Zheng H S, Xie Y L, Tap J, Lepage P, Bertalan M, Batto J M, Hansen T, Le Paslier D, Linneberg A, Nielsen H B, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H M, Yu C, Li S T, Jian M, Zhou Y, Li Y R, Zhang X Q, Li S G, Qin N, Yang H M, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich S D, Wang J. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285): 59–65.
Queloz V, Sieber T N, Holdenrieder O, McDonald B A, Grünig C R. 2011. No biogeographical pattern for a rootassociated fungal species complex. Glob. Ecol. Biogeogr., 20(1): 160–169.
Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor E O. 2005. Does ecosystem size determine aquatic bacterial richness? Ecology, 86(7): 1 715–1 722.
Robeson M S, King A J, Freeman K R, Birky C W, Martin A P, Schmidt S K. 2011. Soil rotifer communities are extremely diverse globally but spatially autocorrelated locally. Proc. Natl. Acad. Sci. USA, 108(11): 4 406–4 410.
Spor A, Koren O, Ley R. 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol., 9(4): 279–290.
Zhang H, Jackson T A. 2008. Autochthonous bacterial flora indicated by PCR-DGGE of 16S rRNA gene fragments from the alimentary tract of Costelytra zealandica (Coleoptera: Scarabaeidae). J. Appl. Microbiol., 105(5): 1 277–1 285.
Zhu L F, Wu Q, Dai J Y, Zhang S N, Wei F W. 2011. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc. Natl. Acad. Sci. USA, 108(43): 17 714–17 719.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Basic Research Program of China (973 Program) (No. 2009CB118705), the National Natural Science Foundation of China (Nos. 30970358, 31071896), and the Youth Innovation Promotion Association, CAS
Rights and permissions
About this article
Cite this article
Ni, J., Yan, Q., Yu, Y. et al. Fish gut microecosystem: a model for detecting spatial pattern of microorganisms. Chin. J. Ocean. Limnol. 32, 54–57 (2014). https://doi.org/10.1007/s00343-014-3072-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00343-014-3072-z