Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fields of a Gaussian beam beyond the paraxial approximation

  • Published:
Applied Physics B Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Analytic expressions for the fields of a tightly focused Gaussian laser beam are derived, accurate to ε11, where ε is the diffraction angle. It is found that, for example, using the derived fields, the calculated power can be about 25% more accurate than when calculated using the paraxial approximation for a beam focused down to a waist radius w0∼0.4λ, where λ is the wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.I. Petrov, Opt. Express 9, 658 (2001)

    Article  ADS  Google Scholar 

  2. Y.I. Salamin, C.H. Keitel, Phys. Rev. Lett. 88, 095005 (2002)

    Article  ADS  Google Scholar 

  3. Y.I. Salamin, G.R. Mocken, C.H. Keitel, Phys. Rev. ST Accel. Beams 5, 101301 (2002)

    Article  ADS  Google Scholar 

  4. Y.I. Salamin, G.R. Mocken, C.H. Keitel, Phys. Rev. E 67, 016501 (2003)

    Article  ADS  Google Scholar 

  5. L.W. Davis, Phys. Rev. A 19, 1177 (1979)

    Article  ADS  Google Scholar 

  6. J.P. Barton, D.R. Alexander, J. Appl. Phys. 66, 2800 (1989)

    Article  ADS  Google Scholar 

  7. K.T. McDonald, hep.princeton.edu/∼mcdonald/accel/gaussian.ps; hep.princeton.edu/∼mcdonald/accel/gaussian2.ps

  8. M. Lax, W.H. Louisell, W.B. McKnight, Phys. Rev. A 11, 1365 (1975)

    Article  ADS  Google Scholar 

  9. G.P. Agrawal, D.N. Pattanayak, J. Opt. Soc. Am. 69, 575 (1979)

    Article  ADS  Google Scholar 

  10. T. Takenaka, M. Yokota, O. Fukumitsu, J. Opt. Soc. Am. A 2, 826 (1985)

    ADS  Google Scholar 

  11. A. Wünsche, J. Opt. Soc. Am. A 9, 765 (1992)

    Article  ADS  Google Scholar 

  12. Q. Cao, X. Deng, J. Opt. Soc. Am. A 15, 1144 (1998)

    Article  ADS  Google Scholar 

  13. C.J.R. Sheppard, S. Saghafi, J. Opt. Soc. Am. A 16, 1381 (1999)

    Article  ADS  Google Scholar 

  14. C.G. Chen, P.T. Konkola, J. Ferrara, R.K. Heilmann, M.L. Schattenburg, J. Opt. Soc. Am. A 19, 404 (2002)

    Article  ADS  Google Scholar 

  15. K. Duan, B. Lü, J. Opt. Soc. Am. A 21, 1924 (2004)

    Article  ADS  Google Scholar 

  16. Y. Zhang, L. Wang, C. Zheng, J. Opt. Soc. Am. A 22, 1924 (2005)

    MathSciNet  Google Scholar 

  17. Y.I. Salamin, Concepts Phys. II, 241 (2005)

    Google Scholar 

  18. G. Malka, E. Lefebvre, J.L. Miquel, Phys. Rev. Lett. 78, 3314 (1997)

    Article  ADS  Google Scholar 

  19. K.T. McDonald, Phys. Rev. Lett. 80, 1350 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Lefebvre, G. Malka, J.L. Miquel, Phys. Rev. Lett. 80, 1352 (1998)

    Article  ADS  Google Scholar 

  21. R. Borghi, M. Santarsiero, Opt. Lett. 28, 774 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.I. Salamin.

Additional information

PACS

42.65.-k; 42.50.Vk; 52.75.Di

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salamin, Y. Fields of a Gaussian beam beyond the paraxial approximation. Appl. Phys. B 86, 319–326 (2007). https://doi.org/10.1007/s00340-006-2442-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2442-4

Keywords

Navigation