Abstract
We study long-time dynamical behaviors of weakly self-consistent Vlasov–Fokker–Planck equations. We introduce Hessian matrix conditions on mean-field kernel functions, which characterizes the exponential convergence of solutions in \(L^1\) distances. The matrix condition is derived from the dissipation of a selected Lyapunov functional, namely auxiliary Fisher information functional. We verify proposed matrix conditions in examples.
Similar content being viewed by others
References
Arnold, A., Carlen, E.: A generalized Bakry-Emery condition for non-symmetric diffusions. In: Equadiff 99: (In 2 Volumes), pp. 732–734. World Scientific (2000)
Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric Fokker–Planck equations with linear drift. arXiv preprint arXiv:1409.5425 (2014)
Arnold, A., Markowich, P., Toscani, G.: On large time asymptotics for drift-diffusion-Poisson systems. Transp. Theory Stat. Phys. 29(3–5), 571–581 (2000)
Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Partial Differ. Equ. 26, 43 (2001)
Bakry, D., Émery, M.: Diffusions hypercontractives. In: Seminaire de Probabilités XIX 1983/84, pp. 177–206. Springer (1985)
Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. J. Eur. Math. Soc. 19(1), 151–219 (2016)
Benedetto, D., Caglioti, E., Carrillo, J.A., Pulvirenti, M.: A non-Maxwellian steady distribution for one-dimensional granular media. J. Stat. Phys. 91, 979–990 (1998)
Bolley, F., Guillin, A., Malrieu, F.: Trend to equilibrium and particle approximation for a weakly self-consistent Vlasov–Fokker–Planck equation. ESAIM: Math. Model. Numer. Anal. 44(5), 867–884 (2010)
Bouchut, F.: Existence and uniqueness of a global smooth solution for the Vlasov–Poisson–Fokker–Planck system in three dimensions. J. Funct. Anal. 111(1), 239–258 (1993)
Bouchut, F., Dolbeault, J.: On long time asymptotics of the Vlasov–Fokker–Planck equation and of the Vlasov–Poisson–Fokker–Planck system with Coulombic and Newtonian potentials. Differ. Integral Equ. 8(3), 487–514 (1995)
Calogero, S.: Exponential convergence to equilibrium for kinetic Fokker–Planck equations. Commun. Partial Differ. Equ. 37(8), 1357–1390 (2012)
Carlen, E., Carvalho, M., Esposito, R., Lebowitz, J., Marra, R.: Free energy minimizers for a two-species model with segregation and liquid–vapour transition. Nonlinearity 16(3), 1075 (2003)
Carrillo, J., Hoffmann, F., Stuart, A., Vaes, U.: Consensus based sampling. arXiv preprint arXiv:2106.02519 (2021)
Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19(3), 971–1018 (2003)
Carrillo, J., Soler, J.: On the initial value problem for the Vlasov–Poisson–Fokker–Planck system with initial data in \(L^p\) spaces. Math. Methods Appl. Sci. 18(10), 825–839 (1995)
Cesbron, L., Herda, M.: On a Vlasov–Fokker–Planck equation for stored electron beams. arXiv preprint arXiv:2307.15964 (2023)
Chow, S.-N., Li, W., Zhou, H.: Entropy dissipation of Fokker–Planck equations on graphs. Discrete Contin. Dyn. Syst. 38(10), 4929–4950 (2018)
Desvillettes, L., Villani, C.: On the spatially homogeneous landau equation for hard potentials part ii: h-theorem and applications: H-theorem and applications. Commun. Partial Differ. Equ. 25, 261–298 (2000)
Degond, P.: Global existence of smooth solutions for the Vlasov–Fokker–Planck equation in \(1\) and \(2\) space dimensions. Ann. Sci. Ècole Norm. Sup. 19(4), 519 (1986)
Duong, M.H., Ottobre, M.: Non-reversible processes: GENERIC, Hypocoercivity and fluctuations (2021)
Esposito, R., Guo, Y., Marra, R.: Stability of the front under a Vlasov–Fokker–Planck dynamics. Arch. Ration. Mech. Anal. 195(1), 75–116 (2010)
Feng, Q., Li, W.: Entropy dissipation for degenerate stochastic differential equations via sub-Riemannian density manifold. Entropy 25, 786 (2023)
Feng, Q., Li, W.: Hypoelliptic entropy dissipation for stochastic differential equations. arXiv preprint arXiv:2102.00544 (2021)
Garbuno-Inigo, A., Hoffmann, F., Li, W., Stuart, A.M.: Interacting Langevin diffusions: gradient structure and ensemble Kalman sampler. SIAM J. Appl. Dyn. Syst. 19(1), 412–441 (2020)
Guillin, A., Bris, P.L., Monmarche, P.: Convergence rates for the Vlasov–Fokker–Planck equation and uniform in time propagation of chaos in non convex cases. arXiv preprint arXiv:2105.09070 (2021)
Guillin, A., Liu, W., Wu, L., Zhang, C.: Uniform Poincare and logarithmic Sobolev inequalities for mean field particles systems. arXiv preprint arXiv:1909.07051 (2019)
Guillin, A., Liu, W., Wu, L., Zhang, C.: The kinetic Fokker–Planck equation with mean field interaction. J. Math. Pures Appl. 150, 1–23 (2021)
Hu, K., Ren, Z., Siska, D., Szpruch, L.: Mean-field Langevin dynamics and energy landscape of neural networks. arXiv preprint arXiv:1905.07769 (2019)
Kazeykina, A., Ren, Z., Tan, X., Yang, J.: Ergodicity of the underdamped mean-field Langevin dynamics. arXiv preprint arXiv:2007.14660 (2020)
Li, W.: Transport information geometry: Riemannian calculus on probability simplex. Inf. Geom. 5, 161 (2021)
Li, W., Liu, S., Osher, S.: Controlling conservation laws i: entropy–entropy flux. arXiv preprint arXiv:2111.05473 (2021)
Ma, Y.-A., Chatterji, N., Cheng, X., Flammarion, N., Bartlett, P., Jordan, M.I.: Is there an analog of Nesterov acceleration for MCMC? arXiv preprint arXiv:1902.00996 (2019)
Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker–Planck equation: an interplay between physics and functional analysis. Mat. Contemp. 19, 1–29 (2000)
Vandenberghe, L., Boyd, S.: Convex Optimization, vol. 1. Cambridge University Press, Cambridge (2004)
Villani, C.: Hypocoercivity, vol. 202, No. 950. Memoirs of the American Mathematical Society (2009)
Wang, F.-Y.: Exponential ergodicity for fully non-dissipative Mckean–Vlasov SDEs. arXiv preprint arXiv:2101.12562 (2021)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Anthony Bloch.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
E. Bayraktar is partially supported by the National Science Foundation under grant DMS-2106556 and by the Susan M. Smith chair. Q. Feng is partially supported by the National Science Foundation under grant DMS-2306769. W. Li is supported by AFOSR MURI FA9550-18-1-0502, AFOSR YIP award No. FA9550-23-1-0087, NSF RTG: 2038080, and NSF DMS-2245097.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bayraktar, E., Feng, Q. & Li, W. Exponential Entropy Dissipation for Weakly Self-Consistent Vlasov–Fokker–Planck Equations. J Nonlinear Sci 34, 7 (2024). https://doi.org/10.1007/s00332-023-09984-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00332-023-09984-0