Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Weak Solutions Obtained by the Vortex Method for the 2D Euler Equations are Lagrangian and Conserve the Energy

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We discuss the Lagrangian property and the conservation of the kinetic energy for solutions of the 2D incompressible Euler equations. Existence of Lagrangian solutions is known when the initial vorticity is in \(L^p\) with \(1\le p\le \infty \), and if \(p\ge 3/2\), all weak solutions are conservative. In this work, we prove that solutions obtained via the vortex method are Lagrangian, and that they are conservative if \(p>1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose, D.M., Kelliher, J.P., Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Serfati solutions to the 2D Euler equations on exterior domain. J. Differ. Equ. 259, 4509–4560 (2015)

    Article  MathSciNet  Google Scholar 

  • Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158, 227–260 (2004)

    Article  MathSciNet  Google Scholar 

  • Beale, J. T.: The approximation of weak solutions to the 2-D Euler equations by vortex elements. Multidymensional Hyperbolic Problems and Computations, In: Glimm, J., Majda, A. (eds.) IMA Vol. Math. Appl. 29, 23–37 (1991)

  • Bohun, A., Bouchut, F., Crippa, G.: Lagrangian solutions to the 2D Euler system with \(L^1\) vorticity and infinite energy. Nonlinear Anal. Theory, Methods Appl. 132, 160–172 (2016)

  • Bouchut, F., Crippa, G.: Lagrangian flows for vector fields with gradient given by a singular integral. J. Hyperb. Differ. Equ. 10, 235–282 (2013)

    Article  MathSciNet  Google Scholar 

  • Bressan, A., Murray, R.: On self-similar solutions to the incompressible Euler equations (2020) http://personal.psu.edu/axb62/PSPDF/EulerSS50.pdf

  • Bressan, A., Shen, W.: A posteriori error estimates for self-similar solutions to the Euler Equations (2020) https://arxiv.org/abs/2002.01962

  • Cheskidov, A., Lopes Filho, M.C., Nussenzveig Lopes, H.J., Shvydkoy, R.: Energy conservation in Two-dimensional incompressible ideal fluids. Commun. Math. Phys 348, 129–143 (2016)

    Article  MathSciNet  Google Scholar 

  • Cheskidov, A., Luo, X.: Nonuniqueness of weak solutions for the transport equation at critical space regularity (2020) arXiv:2004.09538

  • Crippa, G., De Lellis, C.: Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math. 616, 15–46 (2008)

    MathSciNet  MATH  Google Scholar 

  • Crippa, G., Nobili, C., Seis, C., Spirito, S.: Eulerian and Lagrangian solutions to the continuity and Euler equations with \(L^1\) vorticity. SIAM J. Math. Anal. 49(5), 3973–3998 (2017)

    Article  MathSciNet  Google Scholar 

  • Crippa, G., Spirito, S.: Renormalized solutions of the 2D Euler equations. Commun. Math. Phys. 339, 191–198 (2015)

    Article  MathSciNet  Google Scholar 

  • Delort, J.-M.: Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4, 553–586 (1991)

    Article  MathSciNet  Google Scholar 

  • DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  • DiPerna, R.J., Majda, A.: Concentrations in regularizations for 2-D incompressible flow. Commun. Pure Appl. Math. 40, 301–345 (1987)

    Article  MathSciNet  Google Scholar 

  • Lichtenstein, L.: Über einige Existenzproblem der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze. M. Z. 23, 89–154 (1925)

    Article  Google Scholar 

  • Liu, J.-G., Xin, Z.: Convergence of vortex methods for weak solutions to the 2-D Euler equations with vortex sheets data. Commun. Pure Appl. Math. 48, 611–628 (1995)

    Article  MathSciNet  Google Scholar 

  • Lopes Filho, M.C., Mazzucato, A.L., Nussenzveig Lopes, H.J.: Weak solutions, renormalized solutions and enstrophy defects in 2D turbulence. Arch. Ration. Mech. Anal 179(3), 353–387 (2006)

    Article  MathSciNet  Google Scholar 

  • Majda, A.J.: Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana Univ. Math. J. 42, 921–939 (1993)

    Article  MathSciNet  Google Scholar 

  • Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  • Modena, S., Sattig, G.: Convex integration solutions to the transport equation with full dimensional concentration. Ann. Inst. H. Poincarè Anal. Non Linèaire, in press (2020). https://doi.org/10.1016/j.anihpc.2020.03.002

  • Modena, S., Szèkelyhidi Jr., L.: Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE 4(2), 18 (2018)

    Article  MathSciNet  Google Scholar 

  • Modena, S., Szèkelyhidi Jr., L.: Non-renormalized solutions to the continuity equation. Calc. Var. 58, 208 (2019)

    Article  MathSciNet  Google Scholar 

  • Serfati, P.: Solutions \(C^\infty \) en temps, \(n\)-log Lipschitz bornées en espace et équation d’Euler. C. R. Acad. Sci. Paris Sér. I Math. 320, 555–558 (1995)

    MathSciNet  MATH  Google Scholar 

  • Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  • Vecchi, I., Wu, S.J.: On \(L^1\)-vorticity for 2-D incompressible flow. Manuscripta Math. 78(4), 403–412 (1993)

    Article  MathSciNet  Google Scholar 

  • Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I (2018a) arXiv:1805.09426

  • Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II (2018b) arXiv:1805.09440

  • Wolibner, W.: Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogene, incompressible, pendant un temps infiniment long. Math. Z. 37, 698–726 (1933)

    Article  MathSciNet  Google Scholar 

  • Yudovič, V.I.: Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research has been supported by the ERC Starting Grant 676675 FLIRT. Gennaro Ciampa and Stefano Spirito acknowledge the support of INdAM-GNAMPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Crippa.

Additional information

Communicated by Dr. Peter Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciampa, G., Crippa, G. & Spirito, S. Weak Solutions Obtained by the Vortex Method for the 2D Euler Equations are Lagrangian and Conserve the Energy. J Nonlinear Sci 30, 2787–2820 (2020). https://doi.org/10.1007/s00332-020-09635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-020-09635-8

Keywords

Mathematics Subject Classification

Navigation