Abstract
We discuss the Lagrangian property and the conservation of the kinetic energy for solutions of the 2D incompressible Euler equations. Existence of Lagrangian solutions is known when the initial vorticity is in \(L^p\) with \(1\le p\le \infty \), and if \(p\ge 3/2\), all weak solutions are conservative. In this work, we prove that solutions obtained via the vortex method are Lagrangian, and that they are conservative if \(p>1\).
Similar content being viewed by others
References
Ambrose, D.M., Kelliher, J.P., Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Serfati solutions to the 2D Euler equations on exterior domain. J. Differ. Equ. 259, 4509–4560 (2015)
Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158, 227–260 (2004)
Beale, J. T.: The approximation of weak solutions to the 2-D Euler equations by vortex elements. Multidymensional Hyperbolic Problems and Computations, In: Glimm, J., Majda, A. (eds.) IMA Vol. Math. Appl. 29, 23–37 (1991)
Bohun, A., Bouchut, F., Crippa, G.: Lagrangian solutions to the 2D Euler system with \(L^1\) vorticity and infinite energy. Nonlinear Anal. Theory, Methods Appl. 132, 160–172 (2016)
Bouchut, F., Crippa, G.: Lagrangian flows for vector fields with gradient given by a singular integral. J. Hyperb. Differ. Equ. 10, 235–282 (2013)
Bressan, A., Murray, R.: On self-similar solutions to the incompressible Euler equations (2020) http://personal.psu.edu/axb62/PSPDF/EulerSS50.pdf
Bressan, A., Shen, W.: A posteriori error estimates for self-similar solutions to the Euler Equations (2020) https://arxiv.org/abs/2002.01962
Cheskidov, A., Lopes Filho, M.C., Nussenzveig Lopes, H.J., Shvydkoy, R.: Energy conservation in Two-dimensional incompressible ideal fluids. Commun. Math. Phys 348, 129–143 (2016)
Cheskidov, A., Luo, X.: Nonuniqueness of weak solutions for the transport equation at critical space regularity (2020) arXiv:2004.09538
Crippa, G., De Lellis, C.: Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math. 616, 15–46 (2008)
Crippa, G., Nobili, C., Seis, C., Spirito, S.: Eulerian and Lagrangian solutions to the continuity and Euler equations with \(L^1\) vorticity. SIAM J. Math. Anal. 49(5), 3973–3998 (2017)
Crippa, G., Spirito, S.: Renormalized solutions of the 2D Euler equations. Commun. Math. Phys. 339, 191–198 (2015)
Delort, J.-M.: Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4, 553–586 (1991)
DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)
DiPerna, R.J., Majda, A.: Concentrations in regularizations for 2-D incompressible flow. Commun. Pure Appl. Math. 40, 301–345 (1987)
Lichtenstein, L.: Über einige Existenzproblem der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze. M. Z. 23, 89–154 (1925)
Liu, J.-G., Xin, Z.: Convergence of vortex methods for weak solutions to the 2-D Euler equations with vortex sheets data. Commun. Pure Appl. Math. 48, 611–628 (1995)
Lopes Filho, M.C., Mazzucato, A.L., Nussenzveig Lopes, H.J.: Weak solutions, renormalized solutions and enstrophy defects in 2D turbulence. Arch. Ration. Mech. Anal 179(3), 353–387 (2006)
Majda, A.J.: Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana Univ. Math. J. 42, 921–939 (1993)
Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002)
Modena, S., Sattig, G.: Convex integration solutions to the transport equation with full dimensional concentration. Ann. Inst. H. Poincarè Anal. Non Linèaire, in press (2020). https://doi.org/10.1016/j.anihpc.2020.03.002
Modena, S., Szèkelyhidi Jr., L.: Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE 4(2), 18 (2018)
Modena, S., Szèkelyhidi Jr., L.: Non-renormalized solutions to the continuity equation. Calc. Var. 58, 208 (2019)
Serfati, P.: Solutions \(C^\infty \) en temps, \(n\)-log Lipschitz bornées en espace et équation d’Euler. C. R. Acad. Sci. Paris Sér. I Math. 320, 555–558 (1995)
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
Vecchi, I., Wu, S.J.: On \(L^1\)-vorticity for 2-D incompressible flow. Manuscripta Math. 78(4), 403–412 (1993)
Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I (2018a) arXiv:1805.09426
Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II (2018b) arXiv:1805.09440
Wolibner, W.: Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogene, incompressible, pendant un temps infiniment long. Math. Z. 37, 698–726 (1933)
Yudovič, V.I.: Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)
Acknowledgements
This research has been supported by the ERC Starting Grant 676675 FLIRT. Gennaro Ciampa and Stefano Spirito acknowledge the support of INdAM-GNAMPA.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Dr. Peter Constantin.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ciampa, G., Crippa, G. & Spirito, S. Weak Solutions Obtained by the Vortex Method for the 2D Euler Equations are Lagrangian and Conserve the Energy. J Nonlinear Sci 30, 2787–2820 (2020). https://doi.org/10.1007/s00332-020-09635-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-020-09635-8