Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Spatiotemporal Dynamics of a Diffusive Predator–Prey System with Allee Effect and Threshold Hunting

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we study a diffusive predator–prey system with the Allee effect and threshold hunting. First, the number of interior equilibrium points is determined by discussing the relation of parameters. Then, preliminary analysis on the local asymptotic stability and bifurcations of non-spatial system based on ordinary differential equations is presented. It is noted that four stable equilibrium points coexist due to the Allee effect and threshold hunting. The stability of interior equilibrium points and the existence of Turing instability induced by the diffusion, spatially homogeneous and inhomogeneous Hopf bifurcation, Turing–Hopf bifurcation are studied by analyzing the corresponding characteristic equation for spatial system. By constructing generalized Jacobian matrix, we analyze the stability of interior equilibrium point where u-component is equal to the threshold of functional response. These results show that the Allee effect, threshold hunting and diffusion have significant impacts on the dynamics. Last, we present some numerical simulations that supplement the analytic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Allee, W.C.: Animal aggregations. Q. Rev. Biol. 2(3), 367–398 (1927)

    Article  Google Scholar 

  • Aronson, D.G.: The Role of Diffusion in Mathematical Population Biology: Skellam Revisited, Mathematics in Biology and Medicine. Springer-Verlag, Berlin, Heidelberg (1985)

    MATH  Google Scholar 

  • Berec, L., Angulo, E., Courchamp, F.: Multiple Allee effects and population management. Trends Ecol. Evol. 22(4), 185–191 (2007)

    Article  Google Scholar 

  • Boukal, D.S., Berec, L.: Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. J. Theor. Biol. 218(3), 375–394 (2002)

    Article  MathSciNet  Google Scholar 

  • Boukal, D.S., Sabelis, M.W., Berec, L.: How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theor. Popul. Biol. 72(1), 136–147 (2007)

    Article  Google Scholar 

  • Burgman, M.A., Ferson, S., Akcakaya, H.R.: Risk Assessment in Conservation Biology. Springer Science & Business Media, New York (1993)

    Google Scholar 

  • Cantrell, R.S., Cosner, C.: On the dynamics of predator–prey models with the Beddington–DeAngelis functional response. J. Math. Anal. Appl. 257(1), 206–222 (2001)

    Article  MathSciNet  Google Scholar 

  • Cantrell, R.S., Cosner, C.: Spatial ecology via reaction–diffusion equations. Bull. Am. Math. Soc. 41, 551–557 (2004)

    Article  Google Scholar 

  • Cao, X., Jiang, W.: Turing-Hopf bifurcation and spatiotemporal patterns in a diffusive predator–prey system with Crowley–Martin functional response. Nonlinear Anal-Theor. 43, 428–450 (2018)

    Article  MathSciNet  Google Scholar 

  • Carr, J.: Applications of Centre Manifold Theory. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  • Chen, S., Wei, J., Zhang, J.: Dynamics of a diffusive predator–prey model: the effect of conversion rate. J. Dyn. Differ. Equ. 30(4), 1683–1701 (2018)

    Article  MathSciNet  Google Scholar 

  • Clarke, F.H., Ledyaev, Y.S., Stern, R.J., et al.: Nonsmooth Analysis and Control Theory. Springer Science & Business Media, New York (2008)

    MATH  Google Scholar 

  • Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14(10), 405–410 (1999)

    Article  Google Scholar 

  • Courchamp, F., Berec, L., Gascoigne, J.: Allee Effects in Ecology and Conservation. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  • Gurtin, M.E., MacCamy, R.C.: On the diffusion of biological populations. Math. Biosci. 33(1–2), 35–49 (1977)

    Article  MathSciNet  Google Scholar 

  • Hassard, B.D., Kazarinoff, N.D. Wan, Y.H.: Theory and Applications of Hopf Bifurcation, in: London Mathematical Society Lecture Note Series, vol. 41, Cambridge University Press, Cambridge (1981)

  • Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91(5), 293–320 (1959)

    Article  Google Scholar 

  • Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91(7), 385–398 (1959)

    Article  Google Scholar 

  • Jiang, W., An, Q., Shi, J.: Formulation of the normal forms of Turing–Hopf bifurcation in reaction–diffusion systems with time delay. (2018) arXiv preprint arXiv:1802.10286

  • Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer Science & Business Media, New York (2013)

    Google Scholar 

  • Mishra, P., Raw, S.N., Tiwari, B.: Study of a Leslie–Gower predator-prey model with prey defense and mutual interference of predators. Chaos Soliton. Fract. 120, 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  • Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Springer Science & Business Media, New York (2012)

    Google Scholar 

  • Peng, R., Yi, F., Zhao, X.: Spatiotemporal patterns in a reaction–diffusion model with the Degn–Harrison reaction scheme. J. Differ. Equ. 254(6), 2465–2498 (2013)

    Article  MathSciNet  Google Scholar 

  • Perko, L.: Differential Equations and Dynamical Systems. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  • Petrovskii, S.V., Morozov, A.Y., Venturino, E.: Allee effect makes possible patchy invasion in a predator–prey system. Ecol. Lett. 5(3), 345–352 (2002)

    Article  Google Scholar 

  • Seo, G., DeAngelis, D.L.: A predator-prey model with a Holling type I functional response including a predator mutual interference. J. Nonlinear Sci. 21(6), 811–833 (2011)

    Article  MathSciNet  Google Scholar 

  • Seo, G., Kot, M.: A comparison of two predator-prey models with Holling’s type I functional response. Math. Biosci. 212(2), 161–179 (2008)

    Article  MathSciNet  Google Scholar 

  • Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38(1–2), 196–218 (1951)

    Article  MathSciNet  Google Scholar 

  • Song, Y., Zhang, T., Peng, Y.: Turing–Hopf bifurcation in the reaction–diffusion equations and its applications. Commun. Nonlinear Sci. 33, 229–258 (2016)

    Article  MathSciNet  Google Scholar 

  • Song, Y., Jiang, H., Liu, Q., et al.: Spatiotemporal dynamics of the diffusive Mussel–Algae model near Turing–Hopf bifurcation. SIAM. J. Appl. Dyn. Syst. 16(4), 2030–2062 (2017)

    Article  MathSciNet  Google Scholar 

  • Taylor, C.M., Hastings, A.: Allee effects in biological invasions. Ecol. Lett. 8(8), 895–908 (2005)

    Article  Google Scholar 

  • Verma, M., Misra, A.K.: Modeling the effect of prey refuge on a ratio-dependent predator-prey system with the Allee effect. B. Math. Biol. 80(3), 626–656 (2018)

    Article  MathSciNet  Google Scholar 

  • Wang, M., Kot, M.: Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci. 171(1), 83–97 (2001)

    Article  MathSciNet  Google Scholar 

  • Wang, X., Wei, J.: Dynamics in a diffusive predator–prey system with strong Allee effect and Ivlev-type functional response. J. Math. Anal. Appl. 422(2), 1447–1462 (2015)

    Article  MathSciNet  Google Scholar 

  • Wang, J., Shi, J., Wei, J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol. 62(3), 291–331 (2011)

    Article  MathSciNet  Google Scholar 

  • Wang, J., Shi, J., Wei, J.: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey. J. Differ. Equ. 251(4–5), 1276–1304 (2011)

    Article  MathSciNet  Google Scholar 

  • Wu, D., Zhao, H., Yuan, Y.: Complex dynamics of a diffusive predator-prey model with strong Allee effect and threshold harvesting. J. Math. Anal. Appl. 469(2), 982–1014 (2019)

    Article  MathSciNet  Google Scholar 

  • Xiao, D., Ruan, S.: Global analysis in a predator-prey system with nonmonotonic functional response. SIAM. J. Appl. Math. 61(4), 1445–1472 (2001)

    Article  MathSciNet  Google Scholar 

  • Ye, Q., Li, Z., Wang, M., et al.: Introduction to Reaction–Diffusion Equations. Chinese Science Press, Beijing (1990)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and anonymous referees for their valuable comments and suggestions which lead to an improvement of the manuscript. The work is partially supported by the National Natural Science Foundation of China (Nos. 11571170, 31570417); the Natural Science Foundation of Anhui Province of China (Nos. 1608085MA14, 1908085MA01); the Key Project of Natural Science Research of Anhui Higher Education Institutions of China (No. KJ2018A0365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyong Zhao.

Additional information

Communicated by Dr. Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Zhao, H. Spatiotemporal Dynamics of a Diffusive Predator–Prey System with Allee Effect and Threshold Hunting. J Nonlinear Sci 30, 1015–1054 (2020). https://doi.org/10.1007/s00332-019-09600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09600-0

Keywords

Mathematics Subject Classification

Navigation