Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Stochastic Mean-Field Approach to Fluid Dynamics

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

It is shown that the incompressible Navier–Stokes equation can be derived from an infinite-dimensional mean-field stochastic differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The input of one of the referees concerning this point is gratefully acknowledged.

  2. It is gratefully acknowledged that one of the referees pointed out Constantin and Iyer (2008) (which was unknown to the author).

References

  • Ahmed, N.U., Ding, X.: A semilinear McKean–Vlasov stochastic evolution equation in Hilbert space. Stoch. Process. Appl. 60, 65–85 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Albeverio, S., Belopolskaya, Ya.: Generalized solutions of the Cauchy problem for the Navier–Stokes system and diffusion processes. Cubo 12(2), 77–96 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Chorin, A., Hughes, T., McCracken, M., Marsden, J.: Product formulas and numerical algorithms. Commun. Pure Appl. Math. 31, 205–256 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Chorin, A., Marsden, J.: Mathematical Introduction to Fluid Mechanics. Springer, New York (1993)

    Book  MATH  Google Scholar 

  • Cipriano, F., Cruzeiro, A.B.: Navier–Stokes equation and diffusions on the group of homeomorphisms of the torus. Commun. Math. Phys. 275(1), 255–269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, P.: An Eulerian–Lagrangian approach for incompressible fluids: local theory. J. Am. Math. Soc. 14(2), 263–278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, P., Iyer, G.: A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations. Commun. Pure Appl. Math. 61(3), 330–345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Crisan, D., Flandoli, F., Holm, D.D.: Solution properties of a 3D stochastic Euler fluid equation. arXiv:1704.06989

  • Cruzeiro, A.B.: Hydrodynamics, probability and the geometry of the diffeomorphism group. Seminar on Stochastic Analysis, Random Fields and Applications VI pp. 83–93 (2011)

  • Cruzeiro, A.B., Shamarova, E.: Navier–Stokes equations and forwardbackward SDEs on the group of diffeomorphisms of a torus. Stoch. Process. Appl. 119(12), 4034–4060 (2009)

    Article  MATH  Google Scholar 

  • Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2nd edn. CUP, Cambridge (2014)

    Book  MATH  Google Scholar 

  • Del Moral, P.: Mean-field simulation for Monte-Carlo integration. Chapman Hall, London (2016)

    MATH  Google Scholar 

  • Eyink, G.L.: Stochastic least-action principle for the incompressible Navier–Stokes equation. Phys. D 239(14), 1236–1240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Eyink, G.L., Drivas, T.D.: A Lagrangian fluctuation–dissipation relation for scalar turbulence. Part I. Flows with no bounding walls. J. Fluid Mech. 829, 153–189 (2017)

    Article  MathSciNet  Google Scholar 

  • Ebin, D., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92(1), 1037–1041 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Glikhlikh, Y.: Global and Stochastic Analysis with Applications to Mathematical Physics. Springer TMP, New York (2011)

    Book  Google Scholar 

  • Govindan, T.: Yosida Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications. Springer, New York (2016)

    Book  MATH  Google Scholar 

  • Iyer, G.: A stochastic Lagrangian formulation of the Navier–Stokes and related transport equations. Ph.D. Thesis, University of Chicago (2006)

  • Iyer, G.: A stochastic perturbation of inviscid flows. Commun. Math. Phys. 266(3), 631–645 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. CUP, Cambridge (2003)

    MATH  Google Scholar 

  • Marsden, J.: On product formulas for nonlinear semigroups. J. Funct. Anal. 13(1), 51–72 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J., Ebin, D., Fischer, A.: Diffeomorphism groups, hydrodynamics and relativity. In: Vanstone J. (ed.) Proceedings of the 13th Biennial Seminar of Canadian Mathematical Congress, pp. 135–279 (1972)

  • Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, New York (2005)

  • Rezakhanlou, F.: Stochastically symplectic maps and their applications to the Navier–Stokes equation. Annales de l’Institut Henri Poincare (C) Non Linear Anal. 33(1), 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Yasue, K.: A variational priciple for the Navier–Stokes equation. J. Funct. Anal. 51(2), 133–141 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The paper has benefited a lot from the two very insightful referee reports. Also I want to thank my colleagues at the FMA for discussing fluid mechanics over lunch time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Hochgerner.

Additional information

Communicated by Charles R. Doering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochgerner, S. Stochastic Mean-Field Approach to Fluid Dynamics. J Nonlinear Sci 28, 725–737 (2018). https://doi.org/10.1007/s00332-017-9425-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9425-y

Keywords

Mathematics Subject Classification

Navigation