Abstract
We establish a sufficient regularity condition for local solutions of the Navier–Stokes equations. For a suitable weak solution (u, p) on a domain D we prove that if \(\partial _3 u\) belongs to the space \(L_t^{s_0}L_x^{r_0}(D)\) where \(2/s_0 + 3/r_0 \le 2 \) and \(9/4 \le r_0\le 5/2\), then the solution is Hölder continuous in D.
Similar content being viewed by others
References
Beirão da Veiga, H.: A new regularity class for the Navier-Stokes equations in \({\bf R}^{n}\). Chin. Ann. Math. Ser. B 16 (1995), no. 4, 407–412, A Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995), no. 6, 797
Berselli, L.C., Galdi, G.P.: Regularity criteria involving the pressure for the weak solutions to the Navier–Stokes equations. Proc. Am. Math. Soc. 130(12), 3585–3595 (2002)
Chae, D., Choe, H.-J.: Regularity of solutions to the Navier-Stokes equation. Electron. J. Differ. Equ 1999(05), 1 (1999). (electronic)
Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)
Cao, C., Titi, E.S.: Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. 202(3), 919–932 (2011)
Cao, C., Titi, E.S.: Regularity criteria for the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57(6), 2643–2661 (2008)
Escauriaza, L., Seregin, G.A., Šverák, V.: \(L_ {3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58, 3–44 (2003)
He, C.: Regularity for solutions to the Navier–Stokes equations with one velocity component regular. Electr. J. Diff. Equ. 29, 13 (2002). (electronic)
Kukavica, I.: On partial regularity for the Navier-Stokes equations. Discrete Contin. Dyn. Syst. 21(3), 717–728 (2008)
Kukavica, I.: Partial regularity results for solutions of the Navier–Stokes system, Partial differential equations and fluid mechanics, London Mathematical Society Lecture Note Ser., vol. 364, Cambridge University Press, Cambridge, 2009, pp. 121–145
Kukavica, I., Rusin, W., Ziane, M.: An anisotropic partial regularity criterion for the Navier-Stokes equations. J. Math. Fluid Mech. 19, 123–133 (2017)
Kukavica, I., Ziane, M.: Navier-Stokes equations with regularity in one direction. J. Math. Phys. 48(6), 065203 (2007). 10
Kukavica, I., Ziane, M.: One component regularity for the Navier-Stokes equations. Nonlinearity 19(2), 453–469 (2006)
Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)
Lemarié-Rieusset, P.G.: Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC, Boca Raton (2002)
Lemarié-Rieusset, P.G.: The Navier-Stokes problem in the 21st century. CRC Press, Boca Raton (2016)
Lin, F.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Comm. Pure Appl. Math. 51(3), 241–257 (1998)
Ladyzhenskaya, O.A., Seregin, G.A.: On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations. J. Math. Fluid Mech. 1(4), 356–387 (1999)
Mucha, P.B.: Stability of 2D incompressible flows in \({\mathbf{R}^3}\). J. Differ. Equ. 245(9), 2355–2367 (2008)
Neustupa, J., Penel, P.: Regularity of a suitable weak solution to the Navier-Stokes Equations as a Consequence of Regularity of One Velocity Component, Applied Nonlinear Analysis. Kluwer/Plenum, New York (1999)
Neustupa, J., Novotný, A., Penel, P.: An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Topics in mathematical fluid mechanics, Quad. Mat., vol. 10, Dept. Math., Seconda Univ. Napoli, Caserta, pp. 163–183 (2002)
Pokorný, M.: On the result of He concerning the smoothness of solutions to the Navier-Stokes equations, Electron. J. Differential Equations, No. 11, 8 pp. (electronic) (2003)
Penel, P., Pokorný, M.: Improvement of some anisotropic regularity criteria for the Navier–Stokes equations. Discrete Contin. Dyn. Syst. Ser. S 6(5), 1401–1407 (2013)
Penel, P., Pokorný, M.: On anisotropic regularity criteria for the solutions to 3D Navier–Stokes equations. J. Math. Fluid Mech. 13(3), 341–353 (2011)
Penel, P., Pokorný, M.: Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity. Appl. Math. 49(5), 483–493 (2004)
Prodi, G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pure Appl. (4) 48, 173–182 (1959)
Robinson, J.C., Sadowski, W.: Decay of weak solutions and the singular set of the three-dimensional Navier-Stokes equations. Nonlinearity 20(5), 1185–1191 (2007)
Robinson, J.C., Sadowski, W.: A criterion for uniqueness of Lagrangian trajectories for weak solutions of the 3D Navier-Stokes equations. Comm. Math. Phys. 290(1), 15–22 (2009)
Scheffer, V.: Partial regularity of solutions to the Navier-Stokes equations. Pacific J. Math. 66(2), 535–552 (1976)
Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)
Skalák, Z., Kučera, P.: A note on coupling of velocity components in the Navier-Stokes equations. ZAMM Z. Angew. Math. Mech. 84(2), 124–127 (2004)
Sohr, H.: Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z 184(3), 359–375 (1983)
Struwe, M.: On partial regularity results for the Navier–Stokes equations. Comm. Pure Appl. Math. 41(4), 437–458 (1988)
Vasseur, A.F.: A new proof of partial regularity of solutions to Navier–Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 14(5–6), 753–785 (2007)
Wolf, J.: A direct proof of the Caffarelli-Kohn-Nirenberg theorem, Parabolic and Navier-Stokes equations. Part 2, Banach Center Publ., vol. 81, Polish Acad. Sci. Inst. Math., Warsaw, pp. 533–552 (2008)
Wolf, J.: A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations, Advances in mathematical fluid mechanics. Springer, Berlin (2010)
Zhou, Y.: A new regularity criterion for the Navier–Stokes equations in terms of the direction of vorticity. Monatsh. Math. 144(3), 251–257 (2005)
Acknowledgements
I.K. was supported in part by the NSF Grant DMS-1615239, W.R. was supported in part by the NSF Grant DMS-1613831, while M.Z. was supported in part by the NSF Grant DMS-1109562.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Paul Newton.
Rights and permissions
About this article
Cite this article
Kukavica, I., Rusin, W. & Ziane, M. Localized Anisotropic Regularity Conditions for the Navier–Stokes Equations. J Nonlinear Sci 27, 1725–1742 (2017). https://doi.org/10.1007/s00332-017-9382-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-017-9382-5