Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Localized Anisotropic Regularity Conditions for the Navier–Stokes Equations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We establish a sufficient regularity condition for local solutions of the Navier–Stokes equations. For a suitable weak solution (up) on a domain D we prove that if \(\partial _3 u\) belongs to the space \(L_t^{s_0}L_x^{r_0}(D)\) where \(2/s_0 + 3/r_0 \le 2 \) and \(9/4 \le r_0\le 5/2\), then the solution is Hölder continuous in D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beirão da Veiga, H.: A new regularity class for the Navier-Stokes equations in \({\bf R}^{n}\). Chin. Ann. Math. Ser. B 16 (1995), no. 4, 407–412, A Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995), no. 6, 797

  • Berselli, L.C., Galdi, G.P.: Regularity criteria involving the pressure for the weak solutions to the Navier–Stokes equations. Proc. Am. Math. Soc. 130(12), 3585–3595 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, D., Choe, H.-J.: Regularity of solutions to the Navier-Stokes equation. Electron. J. Differ. Equ 1999(05), 1 (1999). (electronic)

    MATH  Google Scholar 

  • Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Cao, C., Titi, E.S.: Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. 202(3), 919–932 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Cao, C., Titi, E.S.: Regularity criteria for the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57(6), 2643–2661 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Escauriaza, L., Seregin, G.A., Šverák, V.: \(L_ {3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58, 3–44 (2003)

    Article  MathSciNet  Google Scholar 

  • He, C.: Regularity for solutions to the Navier–Stokes equations with one velocity component regular. Electr. J. Diff. Equ. 29, 13 (2002). (electronic)

    MathSciNet  MATH  Google Scholar 

  • Kukavica, I.: On partial regularity for the Navier-Stokes equations. Discrete Contin. Dyn. Syst. 21(3), 717–728 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kukavica, I.: Partial regularity results for solutions of the Navier–Stokes system, Partial differential equations and fluid mechanics, London Mathematical Society Lecture Note Ser., vol. 364, Cambridge University Press, Cambridge, 2009, pp. 121–145

  • Kukavica, I., Rusin, W., Ziane, M.: An anisotropic partial regularity criterion for the Navier-Stokes equations. J. Math. Fluid Mech. 19, 123–133 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Kukavica, I., Ziane, M.: Navier-Stokes equations with regularity in one direction. J. Math. Phys. 48(6), 065203 (2007). 10

    Article  MathSciNet  MATH  Google Scholar 

  • Kukavica, I., Ziane, M.: One component regularity for the Navier-Stokes equations. Nonlinearity 19(2), 453–469 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  • Lemarié-Rieusset, P.G.: Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC, Boca Raton (2002)

    Book  MATH  Google Scholar 

  • Lemarié-Rieusset, P.G.: The Navier-Stokes problem in the 21st century. CRC Press, Boca Raton (2016)

    Book  MATH  Google Scholar 

  • Lin, F.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Comm. Pure Appl. Math. 51(3), 241–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Ladyzhenskaya, O.A., Seregin, G.A.: On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations. J. Math. Fluid Mech. 1(4), 356–387 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Mucha, P.B.: Stability of 2D incompressible flows in \({\mathbf{R}^3}\). J. Differ. Equ. 245(9), 2355–2367 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Neustupa, J., Penel, P.: Regularity of a suitable weak solution to the Navier-Stokes Equations as a Consequence of Regularity of One Velocity Component, Applied Nonlinear Analysis. Kluwer/Plenum, New York (1999)

    MATH  Google Scholar 

  • Neustupa, J., Novotný, A., Penel, P.: An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Topics in mathematical fluid mechanics, Quad. Mat., vol. 10, Dept. Math., Seconda Univ. Napoli, Caserta, pp. 163–183 (2002)

  • Pokorný, M.: On the result of He concerning the smoothness of solutions to the Navier-Stokes equations, Electron. J. Differential Equations, No. 11, 8 pp. (electronic) (2003)

  • Penel, P., Pokorný, M.: Improvement of some anisotropic regularity criteria for the Navier–Stokes equations. Discrete Contin. Dyn. Syst. Ser. S 6(5), 1401–1407 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Penel, P., Pokorný, M.: On anisotropic regularity criteria for the solutions to 3D Navier–Stokes equations. J. Math. Fluid Mech. 13(3), 341–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Penel, P., Pokorný, M.: Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity. Appl. Math. 49(5), 483–493 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Prodi, G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pure Appl. (4) 48, 173–182 (1959)

    Article  MATH  Google Scholar 

  • Robinson, J.C., Sadowski, W.: Decay of weak solutions and the singular set of the three-dimensional Navier-Stokes equations. Nonlinearity 20(5), 1185–1191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, J.C., Sadowski, W.: A criterion for uniqueness of Lagrangian trajectories for weak solutions of the 3D Navier-Stokes equations. Comm. Math. Phys. 290(1), 15–22 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Scheffer, V.: Partial regularity of solutions to the Navier-Stokes equations. Pacific J. Math. 66(2), 535–552 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Skalák, Z., Kučera, P.: A note on coupling of velocity components in the Navier-Stokes equations. ZAMM Z. Angew. Math. Mech. 84(2), 124–127 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Sohr, H.: Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z 184(3), 359–375 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Struwe, M.: On partial regularity results for the Navier–Stokes equations. Comm. Pure Appl. Math. 41(4), 437–458 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Vasseur, A.F.: A new proof of partial regularity of solutions to Navier–Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 14(5–6), 753–785 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Wolf, J.: A direct proof of the Caffarelli-Kohn-Nirenberg theorem, Parabolic and Navier-Stokes equations. Part 2, Banach Center Publ., vol. 81, Polish Acad. Sci. Inst. Math., Warsaw, pp. 533–552 (2008)

  • Wolf, J.: A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations, Advances in mathematical fluid mechanics. Springer, Berlin (2010)

    Google Scholar 

  • Zhou, Y.: A new regularity criterion for the Navier–Stokes equations in terms of the direction of vorticity. Monatsh. Math. 144(3), 251–257 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I.K. was supported in part by the NSF Grant DMS-1615239, W.R. was supported in part by the NSF Grant DMS-1613831, while M.Z. was supported in part by the NSF Grant DMS-1109562.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kukavica.

Additional information

Communicated by Paul Newton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukavica, I., Rusin, W. & Ziane, M. Localized Anisotropic Regularity Conditions for the Navier–Stokes Equations. J Nonlinear Sci 27, 1725–1742 (2017). https://doi.org/10.1007/s00332-017-9382-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9382-5

Keywords

Mathematics Subject Classification

Navigation