Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The Kolmogorov–Obukhov Statistical Theory of Turbulence

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In 1941 Kolmogorov and Obukhov postulated the existence of a statistical theory of turbulence, which allows the computation of statistical quantities that can be simulated and measured in a turbulent system. These are quantities such as the moments, the structure functions and the probability density functions (PDFs) of the turbulent velocity field. In this paper we will outline how to construct this statistical theory from the stochastic Navier–Stokes equation. The additive noise in the stochastic Navier–Stokes equation is generic noise given by the central limit theorem and the large deviation principle. The multiplicative noise consists of jumps multiplying the velocity, modeling jumps in the velocity gradient. We first estimate the structure functions of turbulence and establish the Kolmogorov–Obukhov 1962 scaling hypothesis with the She–Leveque intermittency corrections. Then we compute the invariant measure of turbulence, writing the stochastic Navier–Stokes equation as an infinite-dimensional Ito process, and solving the linear Kolmogorov–Hopf functional differential equation for the invariant measure. Finally we project the invariant measure onto the PDF. The PDFs turn out to be the normalized inverse Gaussian (NIG) distributions of Barndorff-Nilsen, and compare well with PDFs from simulations and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anselmet, F., Gagne, Y., Hopfinger, E.J., Antonia, R.A.: High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 14, 63–89 (1984)

    Article  Google Scholar 

  • Babin, A., Mahalov, A., Nicolaenko, B.: Long-time averaged Euler and Navier-Stokes equations for rotation fluids. In: Kireässner, K., Mielke, A. (eds.) Structure and Dynamics of Non-linear Waves in Fluids, 1994 IUTAM Conference, pp. 145–157. World Scientific, Singapore (1995)

    Google Scholar 

  • Babin, A., Mahalov, A., Nicolaenko, B.: Global splitting, integrability and regularity of 3d Euler and Navier–Stokes equation for uniformely rotation fluids. Eur. J. Mech. B, Fluids 15(2), 08312 (1996)

    MathSciNet  Google Scholar 

  • Barndorff-Nilsen, O.E.: Exponentially decreasing distributions for the logarithm of the particle size. Proc. R. Soc. Lond. A 353, 401–419 (1977)

    Article  Google Scholar 

  • Barndorff-Nilsen, O.E.: Processes of normal inverse Gaussian type. Finance Stoch. 2, 41–68 (1998)

    Article  MathSciNet  Google Scholar 

  • Barndorff-Nilsen, O.E., Blæsig, P., Sorensen, M.: Parametric modelling of turbulence. Philos. Trans. R. Soc. Lond. A 322, 435–455 (1990)

    Google Scholar 

  • Barndorff-Nilsen, O.E., Blaesild, P., Schmiegel, J.: A parsimonious and universal description of turbulent velocity increments. Eur. Phys. J. B 41, 345–363 (2004)

    Article  Google Scholar 

  • Bernard, P.S., Wallace, J.M.: Turbulent Flow. Wiley, Hoboken (2002)

    MATH  Google Scholar 

  • Bhattacharya, R., Waymire, E.C.: Stochastic Processes with Application. Wiley, New York (1990)

    Google Scholar 

  • Bhattacharya, R., Waymire, E.C.: A Basic Course in Probability Theory. Springer, New York (2007)

    MATH  Google Scholar 

  • Billingsley, P.: Probability and Measure. Wiley, New York (1995)

    MATH  Google Scholar 

  • Birnir, B.: Turbulence of a unidirectional flow. In: Proceedings of the Conference on Probability, Geometry and Integrable Systems, MSRI, Dec. 2005 MSRI Publications, vol. 55. Cambridge Univ. Press, Cambridge (2007). Available at http://repositories.cdlib.org/cnls/

    Google Scholar 

  • Birnir, B.: The existence and uniqueness and statistical theory of turbulent solution of the stochastic Navier–Stokes equation in three dimensions, an overview. Banach J. Math. Anal. 4(1), 53–86 (2010). Available at http://repositories.cdlib.org/cnls/

    MathSciNet  MATH  Google Scholar 

  • Birnir, B.: The Kolmogorov–Obukhov Theory of Turbulence. Springer, New York (2013)

    Book  MATH  Google Scholar 

  • Chen, S.Y., Dhruva, B., Kurien, S., Sreenivasan, K.R., Taylor, M.A.: Anomalous scaling of low-order structure functions of turbulent velocity. J. Fluid Mech. 533, 183–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Da Prato, G.: An Introduction of Infinite-Dimensional Analysis. Springer, New York (2006)

    Google Scholar 

  • Dhruva, B.: An experimental study of high-Reynolds-number turbulence in the atmosphere. Ph.D. Thesis, Yale University, New Haven, CT (2000)

  • Dubrulle, B.: Intermittency in fully developed turbulence: in log-Poisson statistics and generalized scale covariance. Phys. Rev. Lett. 73(7), 959–962 (1994)

    Article  Google Scholar 

  • Frisch, U.: Turbulence. Cambridge Univ. Press, Cambridge (1995)

    MATH  Google Scholar 

  • Hopf, E.: Statistical hydrodynamics and functional calculus. J. Ration. Mech. Anal. 1(1), 87–123 (1953)

    MathSciNet  Google Scholar 

  • Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1976)

    Book  MATH  Google Scholar 

  • Kolmogorov, A.N.: Dissipation of energy under locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941a)

    MATH  Google Scholar 

  • Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 9–13 (1941b)

    Google Scholar 

  • Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Kraichnan, R.H.: On Kolmogorov’s inertial-range theories. J. Fluid Mech. 62, 305–330 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Kraichnan, R.H.: Turbulent cascade and intermittency growth. In: Hunt, J.C.R., Phillips, O.M., Williams, D. (eds.) Turbulence and Stochastic Processes, pp. 65–78. Royal Society, London (1991)

    Google Scholar 

  • Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(3), 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  • McKean, H.P.: Turbulence without pressure: existence of the invariant measure. Methods Appl. Anal. 9(3), 463–468 (2002)

    MathSciNet  MATH  Google Scholar 

  • Nelkin, M.: Turbulence in fluids. Am. J. Phys. 68(4), 310–318 (2000)

    Article  Google Scholar 

  • Obukhov, A.M.: On the distribution of energy in the spectrum of turbulent flow. Dokl. Akad. Nauk SSSR 32, 19 (1941)

    Google Scholar 

  • Obukhov, A.M.: Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77–81 (1962)

    Article  MathSciNet  Google Scholar 

  • Oksendal, B.: Stochastic Differential Equations. Springer, New York (1998)

    Book  Google Scholar 

  • Oksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Springer, New York (2005)

    Google Scholar 

  • Onsager, L.: Statistical hydrodynamics. Nuovo Cimento 6(2), 279–287 (1945)

    MathSciNet  Google Scholar 

  • Pope, S.B.: Turbulent Flows. Cambridge Univ. Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  • Renzi, R., Ciliberto, S., Baudet, C., Massaioli, F., Tripiccione, R., Succi, S.: Extended self-similarity in turbulent flow. Phys. Rev. E 48(29), 401–417 (1993)

    Google Scholar 

  • She, Z.-S., Leveque, E.: Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72(3), 336–339 (1994)

    Article  Google Scholar 

  • She, Z.-S., Waymire, E.: Quantized energy cascade and log-Poisson statistics in fully developed turbulence. Phys. Rev. Lett. 74(2), 262–265 (1995)

    Article  Google Scholar 

  • She, Z.-S., Zhang, Z.-X.: Universal hierarchial symmetry for turbulence and general multi-scale fluctuation systems. Acta Mech. Sin. 25, 279–294 (2009)

    Article  Google Scholar 

  • Sreenivasan, K.R., Antonia, R.A.: The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435–472 (1997)

    Article  MathSciNet  Google Scholar 

  • Sreenivasan, K.R., Dhruva, B.: Is there scaling in high- Reynolds-number turbulence? Prog. Theor. Phys. Suppl., 103–120 (1998)

  • Varadhan, S.R.S.: Large Deviations and Applications. SIAM, Philadelphia (1984)

    Book  Google Scholar 

  • Walsh, J.B.: An Introduction to Stochastic Differential Equations. Springer Lecture Notes, Springer, New York (1984). Eds. Dold, A., Eckmann, B.

    Google Scholar 

  • Wilczek, M.: Statistical and numerical investigations of fluid turbulence. Ph.D. Thesis, Westfälische Wilhelms Universität, Münster, Germany (2010)

  • Wilczek, M., Daitche, A., Friedrich, R.: On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity. J. Fluid Mech. 676, 191–217 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, H., Ouellette, N.T., Bodenschatz, E.: Multifractal dimension of Lagrangian turbulence. Phys. Rev. Lett. 96, 114503 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge a large number of colleagues with whom the results in this paper have been discussed and who have provided valuable insights. They include Ole Barndorff-Nilsen and Jurgen Schmiegel in Aarhus, Henry McKean, K.R. Sreenivasan and R. Varadhan in New York, Z.-S. Zhe in Beijing, Ed Waymire in Oregon, E. Bodenschatz and H. Xu in Gottingen, Michael Wilczek in Munster and M. Sørensen in Copenhagen. He also benefitted from conversations with J. Peinke, M. Oberlack, E. Meiburg, B. Eckhardt, S. Childress, L. Biferale, L.-S. Yang, A. Lanotto, K. Demosthenes, M. Nelkin, A. Gylfason, V. L’vov and many others. This research was supported in part by the Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Sciences, Grant No. KJCX2.YW.W10, whose support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Birnir.

Additional information

Communicated by P. Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birnir, B. The Kolmogorov–Obukhov Statistical Theory of Turbulence. J Nonlinear Sci 23, 657–688 (2013). https://doi.org/10.1007/s00332-012-9164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-012-9164-z

Keywords

Mathematics Subject Classification

Navigation