Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Influence of molybdenum doping on the magnetic properties of ZnS nanocrystals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Room-temperature magnetism in chalcogenide semiconductor nanomaterials is an enticing topic. Here, we report the impact of high-valence dopant molybdenum on the magnetic characteristics of zinc sulfide (ZnS) nanocrystals. Structural analysis shows that the incorporation of molybdenum does not alter the cubic phase of the host ZnS lattice except for a small decline in the crystallinity. In the ZnS matrix, the 3% molybdenum concentration results in a bandgap redshift from 3.82 (pristine ZnS) to 3.77 eV. Zinc and sulfur-related vacancies as well as surface defects that exist in the ZnS nanocrystals are confirmed using photoluminescence spectroscopy. Investigations on the magnetic characteristics of as-prepared nanocrystals at room temperature reveal mixed magnetism, with ferromagnetic characteristics at low applied fields and a diamagnetic nature at high applied fields. The maximum coercivity of 247 Oe and the lowest retentivity of 78 μemu/g were observed for the ZnS nanocrystals with 3% of molybdenum. The results of this study may open the pathway toward dilute magnetic semiconductor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors upon reasonable request.

References

  1. R.V. Zaware, B.G. Wagh, Arab. J. Sci. Eng. 40, 2049 (2015)

    Google Scholar 

  2. B. Sarangi, S.P. Mishra, N. Behera, Mater. Sci. Semicond. Process. 147, 106723 (2022)

    Google Scholar 

  3. X. Wang, H. Huang, B. Liang, Z. Liu, D. Chen, G. Shen, Crit. Rev. Solid State Mater. Sci. 38, 57 (2013)

    ADS  Google Scholar 

  4. B. Gilbert, B.H. Frazer, H. Zhang, F. Huang, J.F. Banfield, D. Haskel, J.C. Lang, G. Srajer, G. De Stasio, Phys. Rev. B Condens. Matter Mater. Phys. 66, 1 (2002)

    Google Scholar 

  5. J. Lee, S. Ham, D. Choi, D.J. Jang, Nanoscale 10, 14254 (2018)

    Google Scholar 

  6. S. Premkumar, D. Nataraj, G. Bharathi, S. Ramya, T.D. Thangadurai, Sci. Rep. 9, 1 (2019)

    Google Scholar 

  7. S.J. Basha, G.V.S.S. Sarma, V. Khidhirbrahmendra, T. Rajyalakshmi, D. Swetha, R.V.S.S.N. Ravikumar, Phys. Scr. 95, 105802 (2020)

    ADS  Google Scholar 

  8. S. Vijayan, C.S. Dash, G. Umadevi, M. Sundararajan, R. Mariappan, J. Clust. Sci. 32, 1601 (2020)

    Google Scholar 

  9. A. Badawi, S.S. Alharthi, Superlattices Microstruct. 151, 106838 (2021)

    Google Scholar 

  10. W.Z. Xiao, L.L. Wang, Q.Y. Rong, G. Xiao, B. Meng, J. Appl. Phys. 115, 213905 (2014)

    ADS  Google Scholar 

  11. S. Jindal, P. Sharma, J. Alloys Compd. 879, 160383 (2021)

    Google Scholar 

  12. G.F.A. Malik, M.A. Kharadi, F.A. Khanday, K.A. Shah, S. Mittal, B.K. Kaushik, F.A. Najar, Phys. B Condens. Matter 627, 413525 (2022)

    Google Scholar 

  13. A.N. Andriotis, M. Menon, J. Phys. Condens. Matter 33, 393002 (2021)

    Google Scholar 

  14. M. Górska, Ł Kilański, A. Łusakowski, Phys. Stat. Solidi Basic Res. 259, 2100592 (2022)

    ADS  Google Scholar 

  15. B. Xiao, T. Lv, J. Zhao, Q. Rong, H. Zhang, H. Wei, J. He, J. Zhang, Y. Zhang, Y. Peng, Q. Liu, ACS Catal. 11, 13255 (2021)

    Google Scholar 

  16. D. Gao, G. Yang, J. Zhang, Z. Zhu, M. Si, D. Xue, Appl. Phys. Lett. 99, 052502 (2011)

    ADS  Google Scholar 

  17. V. Proshchenko, S. Horoz, J. Tang, Y. Dahnovsky, J. Appl. Phys. 119, 223901 (2016)

    ADS  Google Scholar 

  18. J. Dong, X. Zeng, W. Xia, X. Zhang, M. Zhou, C. Wang, RSC Adv. 7, 20874 (2017)

    ADS  Google Scholar 

  19. D. Saikia, J.P. Borah, J. Mater. Sci. Mater. Electron. 28, 8029 (2017)

    Google Scholar 

  20. P.C. Patel, S. Ghosh, P.C. Srivastava, Mater. Chem. Phys. 216, 285 (2018)

    Google Scholar 

  21. F. Ghribi, N. Khalifi, S. Mrabet, I. Ghiloufi, Ş Ţălu, L.M. El Mir, H.D. da Fonseca Filho, R.M.P.B. Oliveira, R.S. Matos, Arab. J. Sci. Eng. 47, 7717 (2022)

    Google Scholar 

  22. P. Iranmanesh, S. Saeednia, M. Nourzpoor, Chinese Phys. B 24, 046104 (2015)

    ADS  Google Scholar 

  23. R.K. Srivastava, N. Pandey, S.K. Mishra, Mater. Sci. Semicond. Process. 16, 1659 (2013)

    Google Scholar 

  24. H. Naz, R.N. Ali, X. Zhu, B. Xiang, Phys. E Low Dimension Syst. Nanostruct. 100, 1 (2018)

    ADS  Google Scholar 

  25. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    ADS  Google Scholar 

  26. S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.K. Mohammed, A. Sumaila, Adv. Nat. Sci. Nanosci. Nanotechnol. 10, 045013 (2019)

    ADS  Google Scholar 

  27. R. López, R. Gómez, J. Sol-Gel Sci. Technol. 61, 1 (2012)

    Google Scholar 

  28. M. Pal, N.R. Mathews, E.R. Morales, J.M. Gracia, Y. Jiménez, X. Mathew, Opt. Mater. (Amst). 35, 2664 (2013)

    ADS  Google Scholar 

  29. J. Dai, X. Song, H. Zheng, C. Wu, Mater. Chem. Phys. 174, 204 (2016)

    Google Scholar 

  30. A. Goktas, Phys. E Low Dimension. Syst. Nanostruct. 117, 113828 (2020)

    Google Scholar 

  31. R. Sarkar, C.S. Tiwary, P. Kumbhakar, S. Basu, A.K. Mitra, Phys. E Low Dimension. Syst. Nanostruct. 40, 3115 (2008)

    ADS  Google Scholar 

  32. Z. Deng, H. Yan, Y. Liu, Angew. Chem. Int. Ed. 49, 8695 (2010)

    Google Scholar 

  33. M. Bhushan, R. Jha, R. Bhardwaj, J. Phys. Chem. Solids 135, 109021 (2019)

    Google Scholar 

  34. S. Kumar, A. Jain, S. Panwar, I. Sharma, H.C. Jeon, T.W. Kang, R.K. Choubey, Int. J. Appl. Ceram. Technol. 16, 531 (2019)

    Google Scholar 

  35. L. Chai, J. Du, S. Xiong, H. Li, Y. Zhu, Y. Qian, J. Phys. Chem. C 111, 12658 (2007)

    Google Scholar 

  36. D. Ayodhya, G. Veerabhadram, J. Sci. Adv. Mater. Devices 4, 381 (2019)

    Google Scholar 

  37. M.B. Mohamed, M.H. Abdel-Kader, Mater. Chem. Phys. 241, 122285 (2020)

    Google Scholar 

  38. A. Jrad, M. Naouai, S. Ammar, N. Turki-Kamoun, Mater. Sci. Semicond. Process. 130, 105825 (2021)

    Google Scholar 

  39. M.S. Rana, S.K. Das, M.O. Rahman, F. Ahmed, M.A. Hossain, Trans. Electr. Electron. Mater. 22, 612 (2021)

    Google Scholar 

  40. B. Poornaprakash, U. Chalapathi, M. Kumar, S.V.P. Vattikuti, B. Rajitha, P.T. Poojitha, S.H. Park, Mater. Sci. Semicond. Process. 121, 105395 (2021)

    Google Scholar 

  41. H. Chen, D. Shi, J. Qi, J. Appl. Phys. 109, 084338 (2011)

    ADS  Google Scholar 

  42. R. Sanjeev Kumar, V. Veeravazhuthi, N. Muthukumarasamy, M. Thambidurai, M. Elango, A. Gnanaprakasam, G. Rajesh, SN Appl. Sci. 1, 1 (2019)

    Google Scholar 

  43. X. Zeng, J. Zhang, F. Huang, J. Appl. Phys. 111, 123525 (2012)

    ADS  Google Scholar 

  44. W.Q. Peng, S.C. Qu, G.W. Cong, X.Q. Zhang, Z.G. Wang, J. Cryst. Growth 282, 179 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

The author N. Chidhambaram gratefully acknowledges the Principal and Head of the Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur-613005, Tamil Nadu, India for their encouragement and support. The author R. Meenakshi acknowledges UGC-DAE Consortium for Scientific Research, Indore, India for supporting this study under CRS/2021-22/01/455. The author Arun Thirumurugan acknowledges ANID-SA 77210070 and Universidad de Atacama for the financial support.

Funding

No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to R. Racil Jeya Geetha, N. Chidhambaram or Arun Thirumurugan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Financial interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirmala, R.M.E., Geetha, R.R.J., Meenakshi, R. et al. Influence of molybdenum doping on the magnetic properties of ZnS nanocrystals. Appl. Phys. A 129, 346 (2023). https://doi.org/10.1007/s00339-023-06585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06585-2

Keywords

Navigation