Abstract
Room-temperature magnetism in chalcogenide semiconductor nanomaterials is an enticing topic. Here, we report the impact of high-valence dopant molybdenum on the magnetic characteristics of zinc sulfide (ZnS) nanocrystals. Structural analysis shows that the incorporation of molybdenum does not alter the cubic phase of the host ZnS lattice except for a small decline in the crystallinity. In the ZnS matrix, the 3% molybdenum concentration results in a bandgap redshift from 3.82 (pristine ZnS) to 3.77 eV. Zinc and sulfur-related vacancies as well as surface defects that exist in the ZnS nanocrystals are confirmed using photoluminescence spectroscopy. Investigations on the magnetic characteristics of as-prepared nanocrystals at room temperature reveal mixed magnetism, with ferromagnetic characteristics at low applied fields and a diamagnetic nature at high applied fields. The maximum coercivity of 247 Oe and the lowest retentivity of 78 μemu/g were observed for the ZnS nanocrystals with 3% of molybdenum. The results of this study may open the pathway toward dilute magnetic semiconductor applications.
Similar content being viewed by others
Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding authors upon reasonable request.
References
R.V. Zaware, B.G. Wagh, Arab. J. Sci. Eng. 40, 2049 (2015)
B. Sarangi, S.P. Mishra, N. Behera, Mater. Sci. Semicond. Process. 147, 106723 (2022)
X. Wang, H. Huang, B. Liang, Z. Liu, D. Chen, G. Shen, Crit. Rev. Solid State Mater. Sci. 38, 57 (2013)
B. Gilbert, B.H. Frazer, H. Zhang, F. Huang, J.F. Banfield, D. Haskel, J.C. Lang, G. Srajer, G. De Stasio, Phys. Rev. B Condens. Matter Mater. Phys. 66, 1 (2002)
J. Lee, S. Ham, D. Choi, D.J. Jang, Nanoscale 10, 14254 (2018)
S. Premkumar, D. Nataraj, G. Bharathi, S. Ramya, T.D. Thangadurai, Sci. Rep. 9, 1 (2019)
S.J. Basha, G.V.S.S. Sarma, V. Khidhirbrahmendra, T. Rajyalakshmi, D. Swetha, R.V.S.S.N. Ravikumar, Phys. Scr. 95, 105802 (2020)
S. Vijayan, C.S. Dash, G. Umadevi, M. Sundararajan, R. Mariappan, J. Clust. Sci. 32, 1601 (2020)
A. Badawi, S.S. Alharthi, Superlattices Microstruct. 151, 106838 (2021)
W.Z. Xiao, L.L. Wang, Q.Y. Rong, G. Xiao, B. Meng, J. Appl. Phys. 115, 213905 (2014)
S. Jindal, P. Sharma, J. Alloys Compd. 879, 160383 (2021)
G.F.A. Malik, M.A. Kharadi, F.A. Khanday, K.A. Shah, S. Mittal, B.K. Kaushik, F.A. Najar, Phys. B Condens. Matter 627, 413525 (2022)
A.N. Andriotis, M. Menon, J. Phys. Condens. Matter 33, 393002 (2021)
M. Górska, Ł Kilański, A. Łusakowski, Phys. Stat. Solidi Basic Res. 259, 2100592 (2022)
B. Xiao, T. Lv, J. Zhao, Q. Rong, H. Zhang, H. Wei, J. He, J. Zhang, Y. Zhang, Y. Peng, Q. Liu, ACS Catal. 11, 13255 (2021)
D. Gao, G. Yang, J. Zhang, Z. Zhu, M. Si, D. Xue, Appl. Phys. Lett. 99, 052502 (2011)
V. Proshchenko, S. Horoz, J. Tang, Y. Dahnovsky, J. Appl. Phys. 119, 223901 (2016)
J. Dong, X. Zeng, W. Xia, X. Zhang, M. Zhou, C. Wang, RSC Adv. 7, 20874 (2017)
D. Saikia, J.P. Borah, J. Mater. Sci. Mater. Electron. 28, 8029 (2017)
P.C. Patel, S. Ghosh, P.C. Srivastava, Mater. Chem. Phys. 216, 285 (2018)
F. Ghribi, N. Khalifi, S. Mrabet, I. Ghiloufi, Ş Ţălu, L.M. El Mir, H.D. da Fonseca Filho, R.M.P.B. Oliveira, R.S. Matos, Arab. J. Sci. Eng. 47, 7717 (2022)
P. Iranmanesh, S. Saeednia, M. Nourzpoor, Chinese Phys. B 24, 046104 (2015)
R.K. Srivastava, N. Pandey, S.K. Mishra, Mater. Sci. Semicond. Process. 16, 1659 (2013)
H. Naz, R.N. Ali, X. Zhu, B. Xiang, Phys. E Low Dimension Syst. Nanostruct. 100, 1 (2018)
A.L. Patterson, Phys. Rev. 56, 978 (1939)
S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.K. Mohammed, A. Sumaila, Adv. Nat. Sci. Nanosci. Nanotechnol. 10, 045013 (2019)
R. López, R. Gómez, J. Sol-Gel Sci. Technol. 61, 1 (2012)
M. Pal, N.R. Mathews, E.R. Morales, J.M. Gracia, Y. Jiménez, X. Mathew, Opt. Mater. (Amst). 35, 2664 (2013)
J. Dai, X. Song, H. Zheng, C. Wu, Mater. Chem. Phys. 174, 204 (2016)
A. Goktas, Phys. E Low Dimension. Syst. Nanostruct. 117, 113828 (2020)
R. Sarkar, C.S. Tiwary, P. Kumbhakar, S. Basu, A.K. Mitra, Phys. E Low Dimension. Syst. Nanostruct. 40, 3115 (2008)
Z. Deng, H. Yan, Y. Liu, Angew. Chem. Int. Ed. 49, 8695 (2010)
M. Bhushan, R. Jha, R. Bhardwaj, J. Phys. Chem. Solids 135, 109021 (2019)
S. Kumar, A. Jain, S. Panwar, I. Sharma, H.C. Jeon, T.W. Kang, R.K. Choubey, Int. J. Appl. Ceram. Technol. 16, 531 (2019)
L. Chai, J. Du, S. Xiong, H. Li, Y. Zhu, Y. Qian, J. Phys. Chem. C 111, 12658 (2007)
D. Ayodhya, G. Veerabhadram, J. Sci. Adv. Mater. Devices 4, 381 (2019)
M.B. Mohamed, M.H. Abdel-Kader, Mater. Chem. Phys. 241, 122285 (2020)
A. Jrad, M. Naouai, S. Ammar, N. Turki-Kamoun, Mater. Sci. Semicond. Process. 130, 105825 (2021)
M.S. Rana, S.K. Das, M.O. Rahman, F. Ahmed, M.A. Hossain, Trans. Electr. Electron. Mater. 22, 612 (2021)
B. Poornaprakash, U. Chalapathi, M. Kumar, S.V.P. Vattikuti, B. Rajitha, P.T. Poojitha, S.H. Park, Mater. Sci. Semicond. Process. 121, 105395 (2021)
H. Chen, D. Shi, J. Qi, J. Appl. Phys. 109, 084338 (2011)
R. Sanjeev Kumar, V. Veeravazhuthi, N. Muthukumarasamy, M. Thambidurai, M. Elango, A. Gnanaprakasam, G. Rajesh, SN Appl. Sci. 1, 1 (2019)
X. Zeng, J. Zhang, F. Huang, J. Appl. Phys. 111, 123525 (2012)
W.Q. Peng, S.C. Qu, G.W. Cong, X.Q. Zhang, Z.G. Wang, J. Cryst. Growth 282, 179 (2005)
Acknowledgements
The author N. Chidhambaram gratefully acknowledges the Principal and Head of the Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur-613005, Tamil Nadu, India for their encouragement and support. The author R. Meenakshi acknowledges UGC-DAE Consortium for Scientific Research, Indore, India for supporting this study under CRS/2021-22/01/455. The author Arun Thirumurugan acknowledges ANID-SA 77210070 and Universidad de Atacama for the financial support.
Funding
No funds, grants, or other support were received.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study’s conception and design. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Financial interest
The authors declare they have no financial interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nirmala, R.M.E., Geetha, R.R.J., Meenakshi, R. et al. Influence of molybdenum doping on the magnetic properties of ZnS nanocrystals. Appl. Phys. A 129, 346 (2023). https://doi.org/10.1007/s00339-023-06585-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-023-06585-2