Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Observation of mixed types of energy gaps in some II–VI semiconductors nanostructured films: towards enhanced solar cell performance

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

All solid-state quantum dots embedded multi-junction solar cell with the device structure of (Glass/ITO/ZnTe/ZnS/CdS/Au) is achieved to boost the photo-conversion efficiency by incorporating inner layer of ZnS and by effectively utilizing the entire solar spectrum. Electron beam evaporation was used to deposit the three semiconductor materials ZnTe, ZnS and CdS thin films. The optical properties and energy bandgap of each of the three materials were determined using ellipsometric measurements. The device performance was investigated using current voltage (J–V) techniques at room temperature and under AM1.5 illumination conditions. In this study, we showed that the optical energy gaps of some nanoscale binary semiconductor compounds from II–VI family exhibit both direct and indirect types of optical energy bandgap and there is a giant increase in their direct values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. R. Keshav, M.G. Mahesha, Optical and electrical characterization of vacuum deposited n-CdS/n-ZnS bilayers. Sol. Energy 167, 172–178 (2018)

    ADS  Google Scholar 

  2. M. Samadpour, Efficient CdS/CdSe/ZnS quantum dot sensitized solar cells prepared by ZnS treatment from methanol solvent. Sol. Energy 144, 63–70 (2017)

    ADS  Google Scholar 

  3. K.M. Deng, L. Li, CdS nanoscale photodetectos. Adv. Mater. 26(17), 2619–2635 (2014)

    Google Scholar 

  4. X.S. Fang, L.M. Wu, L.F. Hu, ZnS nanostructure arrays: a developing material star. Adv. Mater. 23(5), 585–598 (2011)

    Google Scholar 

  5. J.H. Kim et al., Raman spectroscopy of ZnS nanostructures. J. Raman Spectrosc. 43(7), 906–910 (2012)

    ADS  Google Scholar 

  6. H.Q. Li et al., One-dimensional CdS nanostructures: a promising candidate for optoelectronics. Adv. Mater. 25(22), 3017–3037 (2013)

    Google Scholar 

  7. T. Ling et al., Highly conductive CdS inverse opals for photochemical solar cells. Adv. Func. Mater. 24(5), 707–715 (2014)

    Google Scholar 

  8. Y. Nandan, M.S. Mehata, Wavefunction engineering of type-I/type-II excitons of CdSe/CdS core-shell quantum dots. Sci. Rep. (2019). https://doi.org/10.1038/s41598-018-37676-3

    Article  Google Scholar 

  9. N. Balis et al., Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim. Acta 91, 246–252 (2013)

    Google Scholar 

  10. Y.L. Chen et al., Enhanced solar cell efficiency and stability using ZnS passivation layer for CdS quantum-dot sensitized actinomorphic hexagonal columnar ZnO. Electrochim. Acta 118, 176–181 (2014)

    Google Scholar 

  11. T. Tokuda, K. Yoshino, Growth and characterization of ZnS films by spray pyrolysis. Physica Status Solidi C Curr. Top. Solid State Phys. 10(7–8), 1102–1106 (2013)

    ADS  Google Scholar 

  12. S. Ulicna et al., Development of ZnTe as a back contact material for thin film cadmium telluride solar cells. Vacuum 139, 159–163 (2017)

    ADS  Google Scholar 

  13. Z. Li et al., Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3(4), 18017 (2018)

    ADS  Google Scholar 

  14. T. Leijtens et al., Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3(10), 828–838 (2018)

    ADS  Google Scholar 

  15. L. Qiu et al., Scalable fabrication of metal halide Perovskite solar cells and modules. ACS Energy Lett. 4(9), 2147–2167 (2019)

    Google Scholar 

  16. S. Almosni et al., Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Sci. Technol. Adv. Mater. 19(1), 336–369 (2018)

    Google Scholar 

  17. J. Li et al., Highly efficient thermally co-evaporated perovskite solar cells and mini-modules. Joule 4(5), 1035–1053 (2020)

    Google Scholar 

  18. C.-G. Park et al., All-inorganic perovskite CsPbI2Br through co-evaporation for planar heterojunction solar cells. Electron. Mater. Lett. 15(1), 56–60 (2019)

    ADS  Google Scholar 

  19. E. Camacho-Espinosa et al., All-sputtered CdTe solar cell activated with a novel method. Sol. Energy 193, 31–36 (2019)

    ADS  Google Scholar 

  20. Q. Tang, H. Yao, Efficiency enhancement of TiOx electron-transporting layer-based ultrathin p-type c-Si solar cell by reactive sputtering of backside MoOx hole-transporting contact. J. Mater. Sci.: Mater. Electron. 31(8), 6406–6417 (2020)

    Google Scholar 

  21. W.-L. Chen, D.-H. Kuo, T.T.A. Tuan, Preparation of CuSbS2 thin films by co-sputtering and solar cell devices with band gap-adjustable n-type InGaN as a substitute of ZnO. J. Electron. Mater. 45(1), 688–694 (2016)

    ADS  Google Scholar 

  22. Q. Wang et al., One-step RF magnetron sputtering method for preparing Cu(In, Ga)Se2 solar cells. J. Mater. Sci. Mater. Electron. 29(14), 11755–11762 (2018)

    Google Scholar 

  23. Y. Zhang et al., Fabrication of 4.9% efficient Cu2ZnSnS4 solar cell using electron-beam evaporated CdS buffer layer. Thin Solid Films 685, 145–150 (2019)

    ADS  Google Scholar 

  24. A.K.M. Hasan et al., Optoelectronic properties of electron beam-deposited NiOx thin films for solar cell application. Results Phys. 17, 103122 (2020)

    Google Scholar 

  25. J. Jin et al., Efficient and stable perovskite solar cells through e-beam preparation of cerium doped TiO2 electron transport layer, ultraviolet conversion layer CsPbBr3 and the encapsulation layer Al2O3. Sol. Energy 198, 187–193 (2020)

    ADS  Google Scholar 

  26. J. Feng et al., E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy 36, 1–8 (2017)

    ADS  Google Scholar 

  27. Z. Zhang et al., Electrodeposition of Cu thin film assisted by Cu nanoparticles for Cu2ZnSnSe4 solar cell applications. Appl. Phys. A 125(9), 599 (2019)

    ADS  Google Scholar 

  28. S.Z. Werta, O.K. Echendu, F.B. Dejene, Physico-chemical studies of Cd1−xZnxS thin films produced by simple two-electrode electrodeposition system for solar cell application. J. Mater. Sci. Mater. Electron. 30(6), 6201–6211 (2019)

    Google Scholar 

  29. D.G. Diso et al., Optimisation of CdTe electrodeposition voltage for development of CdS/CdTe solar cells. J. Mater. Sci. Mater. Electron. 27(12), 12464–12472 (2016)

    Google Scholar 

  30. A.A. Ojo, I.M. Dharmadasa, Progress in development of graded bandgap thin film solar cells with electroplated materials. J. Mater. Sci. Mater. Electron. 28(9), 6359–6365 (2017)

    Google Scholar 

  31. R. Chandran, S.K. Panda, A. Mallik, A short review on the advancements in electroplating of CuInGaSe2 thin films. Mater. Renew. Sustain. Energy 7(2), 6 (2018)

    Google Scholar 

  32. A. Ekinci, Ö. Şahin, S. Horoz, Chemical bath deposition of Co-doped PbS thin films for solar cell application. J. Mater. Sci. Mater. Electron. 31(2), 1210–1215 (2020)

    Google Scholar 

  33. A. Ashok et al., Comparative studies of CdS thin films by chemical bath deposition techniques as a buffer layer for solar cell applications. J. Mater. Sci. Mater. Electron. 31(10), 7499–7518 (2020)

    Google Scholar 

  34. D. Lee et al., ZnS buffer layers grown by modified chemical bath deposition for CIGS Solar Cells. J. Electron. Mater. 47(7), 3483–3489 (2018)

    ADS  Google Scholar 

  35. R.A. Awni et al., Influences of buffer material and fabrication atmosphere on the electrical properties of CdTe solar cells. Prog. Photovolt. 27(12), 1115–1123 (2019)

    Google Scholar 

  36. J. Chantana et al., 22%-efficient Cd-free Cu(In, Ga)(S, Se)(2) solar cell by all-dry process using Zn0.8Mg0.2O and Zn0.9Mg0.1O:B as buffer and transparent conductive oxide layers. Prog. Photovolt. 28, 79–89 (2019)

    Google Scholar 

  37. O.I. Olusola, M.L. Madugu, I.M. Dharmadasa, Investigating the electronic properties of multi-junction ZnS/CdS/CdTe graded bandgap solar cells. Mater. Chem. Phys. 191, 145–150 (2017)

    Google Scholar 

  38. S.H. Hsu, S.F. Hung, S.H. Chien, CdS sensitized vertically aligned single crystal TiO2 nanorods on transparent conducting glass with improved solar cell efficiency and stability using ZnS passivation layer. J. Power Sources 233, 236–243 (2013)

    Google Scholar 

  39. H. Ferhati, F. Djeffal, Graded band-gap engineering for increased efficiency in CZTS solar cells. Opt. Mater. 76, 393–399 (2018)

    ADS  Google Scholar 

  40. L.F. Teng et al., Novel two-step CdS deposition strategy to improve the performance of Cu2ZnSn(S, Se)(4) solar cell. J. Energy Chem. 42, 77–82 (2020)

    Google Scholar 

  41. K. Makita et al., III–V//Si multijunction solar cells with 30% efficiency using smart stack technology with Pd nanoparticle array. Prog. Photovolt. 28, 16–24 (2019)

    Google Scholar 

  42. P.K. Nayak et al., Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4(4), 269–285 (2019)

    ADS  Google Scholar 

  43. F.H. Alharbi, S. Kais, Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew. Sustain. Energy Rev. 43, 1073–1089 (2015)

    Google Scholar 

  44. S.A. Pawar et al., Quantum dot sensitized solar cell based on TiO2/CdS/CdSe/ZnS heterostructure (vol 203, pg 74, 2016). Electrochim. Acta 211, 1092–1092 (2016)

    Google Scholar 

  45. F. Khodam, A.R. Amani-Ghadim, S. Aber, Mg nanoparticles core-CdS QDs shell heterostructures with ZnS passivation layer for efficient quantum dot sensitized solar cell. Electrochim. Acta 308, 25–34 (2019)

    Google Scholar 

  46. J.F. Han et al., Preparation and characterization of ZnS/CdS bi-layer for CdTe solar cell application. J. Phys. Chem. Solids 74(12), 1879–1883 (2013)

    ADS  Google Scholar 

  47. I.O. Oladeji, L. Chow, Synthesis and processing of CdS/ZnS multilayer films for solar cell application. Thin Solid Films 474(1–2), 77–83 (2005)

    ADS  Google Scholar 

  48. V. Hernandez-Calderon et al., Optimization of CdxZn1xS compound from CdS/ZnS bi-layers deposited by chemical bath deposition for thin film solar cells application. Thin Solid Films 676, 100–107 (2019)

    ADS  Google Scholar 

  49. H. Rojas-Chavez et al., ZnTe semiconductor nanoparticles: a chemical approach of the mechanochemical synthesis. Mater. Sci. Semicond. Process. 86, 128–138 (2018)

    Google Scholar 

  50. A. Mayabadi et al., Electrochemical deposition of p-CdTe nanoparticle thin films for solar cell applications. J. Mater. Sci. Mater. Electron. 28(24), 18745–18754 (2017)

    Google Scholar 

  51. Y. Ding et al., Nanoporous TiO2 spheres with tailored textural properties: Controllable synthesis, formation mechanism, and photochemical applications. Prog. Mater Sci. 109, 100620 (2020)

    Google Scholar 

  52. Z. Yuan, Fabrication, performance and atmospheric stability of inverted ZnO nanoparticle/polymer solar cell. Appl. Phys. A 118(1), 75–81 (2015)

    ADS  Google Scholar 

  53. J.N. Hilfiker et al., Estimating depolarization with the jones matrix quality factor. Appl. Surf. Sci. 421, 494–499 (2017)

    ADS  Google Scholar 

  54. J.N. Hilfiker et al., Spectroscopic ellipsometry characterization of multilayer optical coatings. Surf. Coat. Technol. 357, 114–121 (2019)

    Google Scholar 

  55. J.N. Hilfiker et al., Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry. Thin Solid Films 516(22), 7979–7989 (2008)

    ADS  Google Scholar 

  56. J. Tauc, Amorphous and Liquid Semiconductors, vol. ix (Plenum, London, New York, 1974), p. 441

    Google Scholar 

  57. L. Brus, Size, dimensionality, and strong electron correlation in nanoscience. Acc. Chem. Res. 47(10), 2951–2959 (2014)

    Google Scholar 

  58. L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90(12), 2555–2560 (1986)

    Google Scholar 

  59. F. Ahmad, A. Lakhtakia, P.B. Monk, Optoelectronic optimization of graded-bandgap thin-film AlGaAs solar cells. Appl. Opt. 59(4), 1018–1027 (2020)

    ADS  Google Scholar 

  60. D.A. Caselli, C.Z. Ning, High-performance laterally-arranged multiple-bandgap solar cells using spatially composition-graded CdxPb1xS nanowires on a single substrate: a design study. Opt. Express 19(Suppl 4), A686–A694 (2011)

    ADS  Google Scholar 

  61. O. Ergen et al., Graded bandgap perovskite solar cells. Nat. Mater. 16(5), 522–525 (2017)

    ADS  Google Scholar 

  62. T.A.M. Fiducia et al., Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells (vol 4, pg 504, 2019). Nat. Energy 4(6), 526–526 (2019)

    ADS  Google Scholar 

  63. C.A. Wolden et al., The roles of ZnTe buffer layers on CdTe solar cell performance. Sol. Energy Mater. Sol. Cells 147, 203–210 (2016)

    Google Scholar 

  64. K.S. Lee et al., High power conversion efficiency of intermediate band photovoltaic solar cell based on Cr-doped ZnTe. Sol. Energy Mater. Sol. Cells 170, 27–32 (2017)

    Google Scholar 

  65. P. Dingus et al., Low temperature growth and extrinsic doping of mono-crystalline and polycrystalline II–VI solar cells by MBE. Sol. Energy Mater. Sol. Cells 189, 118–124 (2019)

    Google Scholar 

  66. W.K. Metzger et al., Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy 4(10), 837–845 (2019)

    ADS  Google Scholar 

  67. F. Guo et al., A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nat. Commun. 6(1), 7730 (2015)

    ADS  Google Scholar 

  68. D.N. Micha, R.T. Silvares Junior, The influence of solar spectrum and concentration factor on the material choice and the efficiency of multijunction solar cells. Sci. Rep. 9(1), 20055 (2019)

    ADS  Google Scholar 

  69. J.M. Ripalda, J. Buencuerpo, I. García, Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations. Nat. Commun. 9(1), 5126 (2018)

    ADS  Google Scholar 

  70. J.F. Geisz et al., Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 5(4), 326–335 (2020)

    ADS  Google Scholar 

  71. G. Jarosz, R. Marczyński, R. Signerski, Effect of band gap on power conversion efficiency of single-junction semiconductor photovoltaic cells under white light phosphor-based LED illumination. Mater. Sci. Semicond. Process. 107, 104812 (2020)

    Google Scholar 

  72. A. Niv et al., Overcoming the bandgap limitation on solar cell materials. Appl. Phys. Lett. 100(8), 083901 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank King Abdulaziz City for Science and Technology (KACST) for supporting the project no. 1-18-01-009-0076.

Funding

King Abdulaziz City for Science and Technology (KACST). Project no: 1-18-01-009-0076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Shalaan.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaan, E., Ibrahim, E., Al-Marzouki, F. et al. Observation of mixed types of energy gaps in some II–VI semiconductors nanostructured films: towards enhanced solar cell performance. Appl. Phys. A 126, 852 (2020). https://doi.org/10.1007/s00339-020-04045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04045-9

Keywords