Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Epitaxial Co doped BaSnO3 thin films with tunable optical bandgap on MgO substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Co doped BaSnO3 films [BaSn1 − xCoxO3(0 ≤ x ≤ 0.50), i.e., BSCO] have been grown on MgO single-crystal substrates via pulsed laser deposition. Effects of the Co-doping level on the crystallinity, the microstructure, and optical properties of the BSCO films are investigated. All the BSCO films are of high crystallinity and grown epitaxially on MgO substrates. The lattice parameter of the (200) plane drops linearly with the increase of the ‘x’ value. The Co doping is found to increase the film roughness and the grain size, and a RMS roughness of 8.33 nm and grain size up to 100 nm are observed in the film with x = 0.50. The low Co-doping level (x = 0.05, 0.1) has slight anti-reflection effects on the incident visible light, and the Co-doping level higher than 0.2 reduces the optical transmittance significantly. The optical bandgap shows a first-rising then falling trend with the increase of the Co content, and the lowest bandgap of 1.94 eV is realized in the BSCO film with x = 0.50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.N.R. Rao, in Encyclopedia of Physical Science and Technology, 3rd edn., ed. by R.A. By, Meyers (Academic, California, 2013), pp. 707–714

    Google Scholar 

  2. S.I. Beigi, F.J. Walker, S.W. Cheong, K.M. Rabe, C.H. Ahn, Alkaline earth stannates: the next silicon. APL Mater. 3, 062510 (2015)

    ADS  Google Scholar 

  3. R.A. Bucur, A.I. Becur, S. Novaconi, I. Nicoara, BaSnO3 based thermally stable capacitors. J. Alloy. Compd. 542, 142–146 (2012)

    Google Scholar 

  4. W.F. Zhang, J.W. Tang, J.H. Ye, Structural, photocatalytic, and photophysical properties of perovskite MSnO3(M = Ca, Sr, and Ba) photocatalysts. J. Mater. Res. 22, 1859–1871 (2007)

    ADS  Google Scholar 

  5. M.K. Mahapatra, P. Singh, D. Kumar, O. Parkash, Synthesis, crystal structure, microstructure and electrical behaviour of systems Sr1 – xLaxSnO3 and SrSn1 – xNixO3 (x ≤ 0.10). Adv. Appl. Ceram. 105, 280–284 (2006)

    Google Scholar 

  6. Y. Li, X. Zhang, B. Guo, M.D. Wei, Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition. Electrochim. Acta 70, 313–317 (2012)

    Google Scholar 

  7. X. Luo, Y.S. Oh, A. Sirenko, P. Gao, T.A. Tyson, K. Char, K.S.W. Cheong, High carrier mobility in transparent Ba1 – xLaxSnO3 crystals with a wide band gap. Appl. Phys. Lett. 100, 172112 (2012)

    ADS  Google Scholar 

  8. E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, U.L. Fulco, E.L. Albuquerque, Structural and optoelectronic properties, and infrared spectrum of cubic BaSnO3 from first principles calculations. J. Appl. Phys. 112, 043703 (2012)

    ADS  Google Scholar 

  9. Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton, J.R. LaRoche, ZnO nanowire growth and devices. Mat. Sci. Eng. R 47, 1–47 (2004)

    Google Scholar 

  10. N. Rahimi, R.A. Pax, E.M. Gray, Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Ch. 44, 86–105 (2016)

    Google Scholar 

  11. T. Endo, T. Matsuda, H. Takizana, Eu2+ luminescence in Srn+1Sn n O3n + 1 with layered perovskite structure. J. Mater. Sci. Lett. 11, 1330–1332 (1992)

    Google Scholar 

  12. N. Zhang, Z.C. Zhang, J.Z. Zhou, Synthesis of CaSnO3 nanofibers by electrospinning combined with sol–gel. J. Sol-Gel. Sci. Technol. 58, 355–359 (2011)

    Google Scholar 

  13. Y. Shimizu, Y. Fukuyama, T. Narikiyo, H. Arai, T. Seiyama, Perovskite-type oxides having semiconductivity as oxygen sensors. Chem. Lett. 14, 377–380 (1985)

    Google Scholar 

  14. U. Lampe, J. Gerblinger, H. Meixner, Nitrogen oxide sensors based on thin films of BaSnO3. Sensor. Actuat. B-Chem. 26, 97–98 (1995)

    Google Scholar 

  15. U. Lampe, J. Gerblinger, H. Meixner, Carbon-monoxide sensors based on thin films of BaSnO3. Sensor. Actuat. B-Chem. 25, 657–660 (1995)

    Google Scholar 

  16. P. Singh, D. Kumar, O. Parkash, Dielectric behavior of the system BaSn1 – xNbxO3 BaSn1 – xNbxO3 (x⩽0.10). J. Appl. Phys. 97, 074103 (2005)

    ADS  Google Scholar 

  17. U.S. Alaan, A.T.N. Diaye, P. Shafer, E. Arenholz, Y. Suzuki, Structure and magnetism of Fe-doped BaSnO3 thin films. AIP Adv. 7, 055716 (2017)

    ADS  Google Scholar 

  18. K. Balamurugan, E.S. Kumar, B. Ramachandran, S. Venkatesh, N.H. Kumar, M.S.R. Rao, P.N. Santhosh, Dielectric resonance and magnetic properties of Fe-3% doped BaSnO3 thin films grown by pulsed laser deposition. J. Appl. Phys. 111, 074107 (2012)

    ADS  Google Scholar 

  19. Q. Liu, F. Jin, G. Gao, B. Li, Y. Zhang, Q. Liu, Transparent and conductive Ta doped BaSnO3 films epitaxially grown on MgO substrate. J. Alloy. Compd. 684, 125–131 (2016)

    Google Scholar 

  20. B. Li, Q. Liu, Y. Zhang, Z. Liu, L. Geng, Highly conductive Nb doped BaSnO3 thin films on MgO substrates by pulsed laser deposition. J. Alloy. Compd. 680, 343–349 (2016)

    Google Scholar 

  21. B. Li, Y. Zhang, Z. Liu, L. Geng, Structural, electrical, and optical properties of Ba1 – xSmxSnO3 epitaxial thin films on MgO substrates by pulsed laser deposition. J. Alloy. Compd. 708, 1117–1123 (2017)

    Google Scholar 

  22. U.S. Alaan, P. Shafer, A.T.N. Diaye, E. Arenholz, Y. Suzuki, Gd-doped BaSnO3: A transparent conducting oxide with localized magnetic moments. Appl. Phys. Lett. 108, 042106 (2016)

    ADS  Google Scholar 

  23. A.A. Kumar, J. Singh, D.S. Rajput, A. Placke, A. Kumar, J. Kumar, Facile wet chemical synthesis of Er3+/Yb3+ co-doped BaSnO3 nano-crystallites for dye-sensitized solar cell application. Mat. Sci. Semicon. Proc. 83, 83–88 (2018)

    Google Scholar 

  24. K.K. James, P.S. Krishnaprasad, K. Hasna, M.K. Jayaraj, Structural and optical properties of La-doped BaSnO3 thin films grown by PLD. J. Phys. Chem. Solids 76, 64–69 (2015)

    ADS  Google Scholar 

  25. B.C. Luo, X.S. Cao, K.X. Jin, C.L. Chen, Determination of the effective mass and nanoscale electrical transport in La-doped BaSnO3 thin films. Curr. Appl. Phys. 16, 20–23 (2016)

    ADS  Google Scholar 

  26. S.M. Xing, C. Shan, K. Jiang, J.J. Zhu, Y.W. Li, Z.G. Hu, J.H. Chu, Optoelectronic properties and interband transition of La-doped BaSnO3 transparent conducting films determined by variable temperature spectral transmittance. J. Appl. Phys. 117, 103107 (2015)

    ADS  Google Scholar 

  27. J. Shin, Y.M. Kim, Y. Kim, C. Park, K. Char, High mobility BaSnO3 films and field effect transistors on non-perovskite MgO substrate. Appl. Phys. Lett. 109, 262102 (2016)

    ADS  Google Scholar 

  28. U. Kim, C. Park, T. Ha, Y.M. Kim, N. Kim, C. Ju, J. Park, J. Yu, J.H. Kim, K. Char, All-perovskite transparent high mobility field effect using epitaxial BaSnO3 and LaInO3. APL Mater. 3, 036101 (2015)

    ADS  Google Scholar 

  29. J. Zhang, S. Han, W. Luo, S. Xiang, J. Zou, F.E. Oropeza, M. Gu, K.H.L. Zhang, Interface energy band alignment at the all-transparent p–n heterojunction based on NiO and BaSnO3. Appl. Phys. Lett. 112, 171605 (2018)

    ADS  Google Scholar 

  30. N. Rajamanickam, P. Soundarrajan, K. Jayakumar, K. Ramachandran, Improve the power conversion efficiency of perovskite BaSnO3 nanostructures based dye-sensitized solar cells by Fe doping. Sol. Energ. Mat. Sol. C. 166, 69–77 (2017)

    Google Scholar 

  31. A. Taya, P. Rani, M.K. Kashyap, Moss-Burstein shift in La-doped BaSnO3: A novel electron transport layer material for hybrid halide perovskite solar cells. AIP Conf. Proc. 1942, 140039 (2018)

    Google Scholar 

  32. Q.Z. Liu, H. Li, B. Li, W. Wang, Q.C. Liu, Y.X. Zhang, J.M. Dai, Structure and band gap engineering of Fe-doped SrSnO3 epitaxial films. EPL-Europhys. Lett. 108, 37003 (2014)

    ADS  Google Scholar 

  33. X.M. Hu, X.D. Gao, X.M. Li, Z.Y. Gu, Y. Shi, Y.Q. Wu, Microstructure and Band gap modulation of SrSn1 – xCoxO3 epitaxial thin films via pulsed laser deposition. Acta Phys. Chim. Sin. 32, 828–833 (2016)

    Google Scholar 

  34. X.M. Hu, X.D. Gao, D.S. Gao, X.M. Li, Room-temperature ferromagnetism and oxygen pressure-dependent optical, ferromagnetic properties in SrSn0.5Co0.5O3 thin films. Mater. Res. Lett. 6, 276–282 (2017)

    Google Scholar 

  35. I.R. Shein, V.L. Kozhevnikov, A.L. Ivanovskii, Energy-band structure of the A(Sn1 – xMx)O3 (A = Ca, Sr, Ba; M = Mn, Fe, Co) perovskite-type phases: A search for new magnetic semimetals. Semiconductors 40, 1261–1265 (2006)

    ADS  Google Scholar 

  36. P.H. Borse, U.A. Joshi, S.M. Ji, J.S. Jang, J.S. Lee, E.D. Jeong, H.G. Kim, Band gap tuning of lead-substituted BaSnO3 for visible light photocatalysis. Appl. Phys. Lett. 90, 034103 (2007)

    ADS  Google Scholar 

  37. S.H. Lee, H.H. Wang, P. Gopal, J. Shin, H.M.I. Jaim, X.H. Zhang, S.Y. Jeong, D. Usanmaz, S. Curtarolo, M. Fornari, M.B. Nardelli, I. Takeuchi, I, Systematic band gap tuning of BaSnO3 via chemical substitutions: The role of clustering in mixed-valence perovskites. Chem. Mater. 29, 9378–9385 (2017)

    Google Scholar 

  38. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976)

    Google Scholar 

  39. T.A. Germer, J.C. Zwinkels, B.K. Tsai, Chap. 2: theoretical concepts in spectrophotometric measurements. Exp. Methods Phys. Sci. 46, 11–66 (2014)

    Google Scholar 

  40. J. Tauc, R.G. Rovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidii B 16, 627–637 (1966)

    ADS  Google Scholar 

  41. S. Yan, S. Ge, Y. Zuo, W. Qiao, Effects of carbothermal annealing on structure defects, electrical and magnetic properties in Fe-doped In2O3. Scripta Mater. 61, 387–390 (2009)

    Google Scholar 

  42. D.J. Singh, Q. Xu, K.P. Ong, Strain effects on the band gap and optical properties of perovskite SrSnO3 and BaSnO3.. Appl. Phys. Lett. 104, 011910 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

Thank to the financial support from National Key R&D Program of China (2016YFA0201103), National Natural Science Foundation of China (51572281), and Basic Research Foundation of Shanghai, China (15JC1403600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Dong Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, DS., Gao, XD., Wu, YQ. et al. Epitaxial Co doped BaSnO3 thin films with tunable optical bandgap on MgO substrate. Appl. Phys. A 125, 158 (2019). https://doi.org/10.1007/s00339-019-2466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2466-3

Navigation