Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Inflammation and colorectal cancer: colitis-associated neoplasia

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Connection between inflammation and cancer is a rapidly developing field. Epidemiological data suggests that inflammation along with distinct arms of host immune system plays a very important role in the development and progression of many different cancers. Inflammatory bowel disease (IBD) is an important risk factor for the development of colon cancer, namely, colitis-associated cancer (CAC). The molecular mechanisms by which inflammation promotes cancer development are still being uncovered and may differ between CAC and other forms of colorectal cancer. Recent work has shed light on the role of distinct immune cells, cytokines, and other immune mediators in virtually all of the steps of colonic tumorigenesis, including tumor initiation and promotion as well as progression and metastasis. The close proximity of colonic tumors to the myriad of intestinal microbes, as well as instrumental role of microbiota in IBD, introduces microbes as new players capable of triggering inflammation and possibly promoting tumorigenesis. Various mechanisms of CAC tumorigenesis as well as new possible hints for the future approaches for prevention and therapy are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tenesa A, Dunlop MG (2009) New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet 10(6):353–358

    Article  PubMed  CAS  Google Scholar 

  2. Rustgi AK (2007) The genetics of hereditary colon cancer. Genes Dev 21:2525–2538

    Article  PubMed  CAS  Google Scholar 

  3. Feagins LA, Souza RF, Spechler SJ (2009) Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat Rev Gastroenterol Hepatol 6:297–305

    Article  PubMed  CAS  Google Scholar 

  4. Saleh M, Trinchieri G (2011) Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol 11:9–20

    Article  PubMed  CAS  Google Scholar 

  5. Rubin DC, Shaker A, Levin MS (2012) Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol 3:107

    PubMed  Google Scholar 

  6. Lakatos PL, Lakatos L (2008) Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol 14:3937–3947

    Article  PubMed  Google Scholar 

  7. Eaden JA, Abrams KR, Mayberry JF (2001) The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48:526–535

    Article  PubMed  CAS  Google Scholar 

  8. Canavan C, Abrams KR, Mayberry J (2006) Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn's disease. Aliment Pharmacol Ther 23:1097–1104

    Article  PubMed  CAS  Google Scholar 

  9. Jess T, Simonsen J, Jorgensen KT, Pedersen BV, Nielsen NM, Frisch M (2012) Decreasing risk of colorectal cancer in patients with inflammatory bowel disease over 30 years. Gastroenterology 143(2):375–381

    Article  PubMed  Google Scholar 

  10. Herrinton LJ, Liu L, Levin TR, Allison JE, Lewis JD, Velayos F (2012) Incidence and mortality of colorectal adenocarcinoma in persons with inflammatory bowel disease from 1998 to 2010. Gastroenterology 143(2):382–389

    Article  PubMed  Google Scholar 

  11. Nguyen GC, Bressler B (2012) A tale of two cohorts: are we overestimating the risk of colorectal cancer in inflammatory bowel disease? Gastroenterology 143(2):288–290

    Article  PubMed  Google Scholar 

  12. Rubin DT, Cruz-Correa MR, Gasche C, Jass JR, Lichtenstein GR, Montgomery EA et al (2008) Colorectal cancer prevention in inflammatory bowel disease and the role of 5-aminosalicylic acid: a clinical review and update. Inflamm Bowel Dis 14:265–274

    Article  PubMed  Google Scholar 

  13. Neumann H, Vieth M, Langner C, Neurath MF, Mudter J (2011) Cancer risk in IBD: how to diagnose and how to manage DALM and ALM. World J Gastroenterol 17:3184–3191

    Article  PubMed  Google Scholar 

  14. Okayasu I, Ohkusa T, Kajiura K, Kanno J, Sakamoto S (1996) Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39:87–92

    Article  PubMed  CAS  Google Scholar 

  15. Neufert C, Becker C, Neurath MF (2007) An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc 2:1998–2004

    Article  PubMed  CAS  Google Scholar 

  16. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed  CAS  Google Scholar 

  17. Grivennikov SI, Karin M (2010) Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev 20:65–71

    Article  PubMed  CAS  Google Scholar 

  18. Trinchieri G (2012) Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol 30:677–706

    Article  PubMed  CAS  Google Scholar 

  19. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  20. Schneikert J, Behrens J (2007) The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut 56:417–425

    Article  PubMed  CAS  Google Scholar 

  21. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275:1784–1787

    Article  PubMed  CAS  Google Scholar 

  22. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    Article  PubMed  CAS  Google Scholar 

  23. Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103:311–320

    Article  PubMed  CAS  Google Scholar 

  24. Taketo MM, Edelmann W (2009) Mouse models of colon cancer. Gastroenterology 136:780–798

    Article  PubMed  CAS  Google Scholar 

  25. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–611

    Article  PubMed  CAS  Google Scholar 

  26. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT et al (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607

    Article  PubMed  CAS  Google Scholar 

  27. Terzic J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138:2101–2114, e2105

    Article  PubMed  CAS  Google Scholar 

  28. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al (2004) IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296

    Article  PubMed  CAS  Google Scholar 

  29. Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterology 140:1807–1816

    Article  PubMed  CAS  Google Scholar 

  30. Sturlan S, Oberhuber G, Beinhauer BG, Tichy B, Kappel S, Wang J et al (2001) Interleukin-10-deficient mice and inflammatory bowel disease associated cancer development. Carcinogenesis 22:665–671

    Article  PubMed  CAS  Google Scholar 

  31. Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Holland G et al (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Investig 98:1010–1020

    Article  PubMed  CAS  Google Scholar 

  32. Kaler P, Godasi BN, Augenlicht L, Klampfer L (2009) The NF-kappaB/AKT-dependent induction of Wnt signaling in colon cancer cells by macrophages and IL-1beta. Cancer Microenviron 2(1):69–80

    Google Scholar 

  33. Brown JB, Lee G, Managlia E, Grimm GR, Dirisina R, Goretsky T et al (2010) Mesalamine inhibits epithelial beta-catenin activation in chronic ulcerative colitis. Gastroenterology 138:595–605, 605 e591-593

    Article  PubMed  CAS  Google Scholar 

  34. Lee G, Goretsky T, Managlia E, Dirisina R, Singh AP, Brown JB et al (2010) Phosphoinositide 3-kinase signaling mediates beta-catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology 139:869–881, 881 e861-869

    Article  PubMed  CAS  Google Scholar 

  35. Oguma K, Oshima H, Aoki M, Uchio R, Naka K, Nakamura S et al (2008) Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. EMBO J 27:1671–1681

    Article  PubMed  CAS  Google Scholar 

  36. Tessner TG, Muhale F, Riehl TE, Anant S, Stenson WF (2004) Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation. J Clin Invest 114:1676–1685

    PubMed  CAS  Google Scholar 

  37. Pozzi A, Yan X, Macias-Perez I, Wei S, Hata AN, Breyer RM et al (2004) Colon carcinoma cell growth is associated with prostaglandin E2/EP4 receptor-evoked ERK activation. J Biol Chem 279:29797–29804

    Article  PubMed  CAS  Google Scholar 

  38. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310:1504–1510

    Article  PubMed  CAS  Google Scholar 

  39. Westbrook AM, Wei B, Braun J, Schiestl RH (2009) Intestinal mucosal inflammation leads to systemic genotoxicity in mice. Cancer Res 69:4827–4834

    Article  PubMed  CAS  Google Scholar 

  40. Westbrook AM, Schiestl RH (2010) Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation. Cancer Res 70:1875–1884

    Article  PubMed  CAS  Google Scholar 

  41. Meira LB, Bugni JM, Green SL, Lee CW, Pang B, Borenshtein D et al (2008) DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest 118:2516–2525

    PubMed  CAS  Google Scholar 

  42. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285

    Article  PubMed  CAS  Google Scholar 

  43. Olipitz W, Wiktor-Brown D, Shuga J, Pang B, McFaline J, Lonkar P et al (2012) Integrated molecular analysis indicates undetectable DNA damage in mice after continuous irradiation at ~400-fold natural background radiation. Environ Health Perspect 120(8):1130–1136

    Google Scholar 

  44. Mangerich A, Knutson CG, Parry NM, Muthupalani S, Ye W, Prestwich E et al (2012) Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc Natl Acad Sci U S A 109:E1820–E1829

    Article  PubMed  Google Scholar 

  45. Kraus S, Arber N (2009) Inflammation and colorectal cancer. Curr Opin Pharmacol 9(4):405–410

    Article  PubMed  CAS  Google Scholar 

  46. Boulard O, Kirchberger S, Royston DJ, Maloy KJ, Powrie FM (2012) Identification of a genetic locus controlling bacteria-driven colitis and associated cancer through effects on innate inflammation. J Exp Med 209:1309–1324

    Article  PubMed  CAS  Google Scholar 

  47. Erdman SE, Rao VP, Poutahidis T, Ihrig MM, Ge Z, Feng Y et al (2003) CD4(+)CD25(+) regulatory lymphocytes require interleukin 10 to interrupt colon carcinogenesis in mice. Cancer Res 63:6042–6050

    PubMed  CAS  Google Scholar 

  48. Erdman SE, Sohn JJ, Rao VP, Nambiar PR, Ge Z, Fox JG et al (2005) CD4+CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+ mice. Cancer Res 65:3998–4004

    Article  PubMed  CAS  Google Scholar 

  49. Garrett WS, Punit S, Gallini CA, Michaud M, Zhang D, Sigrist KS et al (2009) Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 16:208–219

    Article  PubMed  CAS  Google Scholar 

  50. Shaked H, Hofseth LJ, Chumanevich A, Chumanevich AA, Wang J, Wang Y et al (2012) Chronic epithelial NF-kappaB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation. Proc Natl Acad Sci U S A 109:14007–14012

    Article  PubMed  CAS  Google Scholar 

  51. Erdman SE, Rao VP, Poutahidis T, Rogers AB, Taylor CL, Jackson EA et al (2009) Nitric oxide and TNF-alpha trigger colonic inflammation and carcinogenesis in Helicobacter hepaticus-infected, Rag2-deficient mice. Proc Natl Acad Sci U S A 106:1027–1032

    Article  PubMed  CAS  Google Scholar 

  52. Goodman JE, Hofseth LJ, Hussain SP, Harris CC (2004) Nitric oxide and p53 in cancer-prone chronic inflammation and oxyradical overload disease. Environ Mol Mutagen 44:3–9

    Article  PubMed  CAS  Google Scholar 

  53. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    Article  PubMed  CAS  Google Scholar 

  54. Vong LB, Tomita T, Yoshitomi T, Matsui H, Nagasaki Y (2012) An orally administered redox nanoparticle that accumlates in the colonic mucosa and reduces colitis in mice. Gastroenterology 143(4):1027–1036.e3

    Article  PubMed  CAS  Google Scholar 

  55. Shimizu T, Marusawa H, Endo Y, Chiba T (2012) Inflammation-mediated genomic instability: roles of activation-induced cytidine deaminase in carcinogenesis. Cancer Sci 103(7):1201–1206

    Google Scholar 

  56. Takai A, Marusawa H, Minaki Y, Watanabe T, Nakase H, Kinoshita K et al (2012) Targeting activation-induced cytidine deaminase prevents colon cancer development despite persistent colonic inflammation. Oncogene 31:1733–1742

    Article  PubMed  CAS  Google Scholar 

  57. Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz LA Jr, Sjoblom T et al (2006) The colorectal microRNAome. Proc Natl Acad Sci U S A 103:3687–3692

    Article  PubMed  CAS  Google Scholar 

  58. Grady WM, Carethers JM (2008) Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135:1079–1099

    Article  PubMed  CAS  Google Scholar 

  59. Oving IM, Clevers HC (2002) Molecular causes of colon cancer. Eur J Clin Invest 32:448–457

    Article  PubMed  CAS  Google Scholar 

  60. Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H et al (2007) Transcriptome profile of human colorectal adenomas. Mol Cancer Res 5:1263–1275

    Article  PubMed  CAS  Google Scholar 

  61. Perucho M (2003) Tumors with microsatellite instability: many mutations, targets and paradoxes. Oncogene 22:2223–2225

    Article  PubMed  CAS  Google Scholar 

  62. Foran E, Garrity-Park MM, Mureau C, Newell J, Smyrk TC, Limburg PJ et al (2010) Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6. Mol Cancer Res: MCR 8:471–481

    Article  PubMed  CAS  Google Scholar 

  63. Li Y, Deuring J, Peppelenbosch MP, Kuipers EJ, de Haar C, van der Woude CJ (2012) IL-6-induced DNMT1 activity mediates SOCS3 promoter hypermethylation in ulcerative colitis-related colorectal cancer. Carcinogenesis 33(10):1889–1896

    Google Scholar 

  64. Hartnett L, Egan LJ (2012) Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis 33:723–731

    Article  PubMed  CAS  Google Scholar 

  65. Hahn MA, Hahn T, Lee DH, Esworthy RS, Kim BW, Riggs AD et al (2008) Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res 68:10280–10289

    Article  PubMed  CAS  Google Scholar 

  66. Eads CA, Nickel AE, Laird PW (2002) Complete genetic suppression of polyp formation and reduction of CpG-island hypermethylation in Apc(Min/+) Dnmt1-hypomorphic mice. Cancer Res 62:1296–1299

    PubMed  CAS  Google Scholar 

  67. Yang L, Belaguli N, Berger DH (2009) MicroRNA and colorectal cancer. World J Surg 33:638–646

    Article  PubMed  Google Scholar 

  68. Boldin MP, Baltimore D (2012) MicroRNAs, new effectors and regulators of NF-kappaB. Immunol Rev 246:205–220

    Article  PubMed  CAS  Google Scholar 

  69. Kanaan Z, Rai SN, Eichenberger MR, Barnes C, Dworkin AM, Weller C et al (2012) Differential microRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Hum Mutat 33:551–560

    Article  PubMed  CAS  Google Scholar 

  70. Kuraishy A, Karin M, Grivennikov SI (2011) Tumor promotion via injury- and death-induced inflammation. Immunity 35:467–477

    Article  PubMed  CAS  Google Scholar 

  71. Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21:11–19

    Article  PubMed  CAS  Google Scholar 

  72. Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T et al (2009) gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15:91–102

    Article  PubMed  CAS  Google Scholar 

  73. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113

    Article  PubMed  CAS  Google Scholar 

  74. Schiechl G, Bauer B, Fuss I, Lang SA, Moser C, Ruemmele P et al (2011) Tumor development in murine ulcerative colitis depends on MyD88 signaling of colonic F4/80+CD11b(high)Gr1(low) macrophages. J Clin Invest 121:1692–1708

    Article  PubMed  CAS  Google Scholar 

  75. Tanaka T, Kohno H, Suzuki R, Hata K, Sugie S, Niho N et al (2006) Dextran sodium sulfate strongly promotes colorectal carcinogenesis in Apc(Min/+) mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int J Cancer 118:25–34

    Article  PubMed  CAS  Google Scholar 

  76. Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H (2003) A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci 94:965–973

    Article  PubMed  CAS  Google Scholar 

  77. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR et al (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15:1016–1022

    Article  PubMed  CAS  Google Scholar 

  78. Gupta RA, Dubois RN (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1:11–21

    Article  PubMed  CAS  Google Scholar 

  79. Chung DC (2000) The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology 119:854–865

    Article  PubMed  CAS  Google Scholar 

  80. Rogler G, Andus T (1998) Cytokines in inflammatory bowel disease. World J Surg 22:382–389

    Article  PubMed  CAS  Google Scholar 

  81. Greten FR, Karin M (2005) NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    Article  PubMed  CAS  Google Scholar 

  82. Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 12:715–723

    Article  PubMed  CAS  Google Scholar 

  83. Neurath MF, Pettersson S, Meyer zum Buschenfelde KH, Strober W (1996) Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med 2:998–1004

    Article  PubMed  CAS  Google Scholar 

  84. Majumdar S, Aggarwal BB (2001) Methotrexate suppresses NF-kappaB activation through inhibition of IkappaBalpha phosphorylation and degradation. J Immunol 167:2911–2920

    PubMed  CAS  Google Scholar 

  85. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  PubMed  CAS  Google Scholar 

  86. Eckmann L, Nebelsiek T, Fingerle AA, Dann SM, Mages J, Lang R et al (2008) Opposing functions of IKKbeta during acute and chronic intestinal inflammation. Proc Natl Acad Sci U S A 105:15058–15063

    Article  PubMed  CAS  Google Scholar 

  87. Wang S, Liu Z, Wang L, Zhang X (2009) NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol 6:327–334

    Article  PubMed  CAS  Google Scholar 

  88. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570

    PubMed  CAS  Google Scholar 

  89. Kollias G (2004) Modeling the function of tumor necrosis factor in immune pathophysiology. Autoimmun Rev 3(Suppl 1):S24–S25

    PubMed  Google Scholar 

  90. Atreya R, Neurath MF (2008) New therapeutic strategies for treatment of inflammatory bowel disease. Mucosal Immunol 1:175–182

    Article  PubMed  CAS  Google Scholar 

  91. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  PubMed  CAS  Google Scholar 

  92. Pickert G, Neufert C, Leppkes M, Zheng Y, Wittkopf N, Warntjen M et al (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206:1465–1472

    Article  PubMed  CAS  Google Scholar 

  93. Yang J, Liao X, Agarwal MK, Barnes L, Auron PE, Stark GR (2007) Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes Dev 21:1396–1408

    Article  PubMed  CAS  Google Scholar 

  94. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z et al (2009) Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 15:283–293

    Article  PubMed  CAS  Google Scholar 

  95. Bollrath J, Greten FR (2009) IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep 10:1314–1319

    Article  PubMed  CAS  Google Scholar 

  96. Rose-John S, Scheller J, Elson G, Jones SA (2006) Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 80:227–236

    Article  PubMed  CAS  Google Scholar 

  97. Scheller J, Rose-John S (2006) Interleukin-6 and its receptor: from bench to bedside. Med Microbiol Immunol 195:173–183

    Article  PubMed  CAS  Google Scholar 

  98. Kishimoto T (2005) Interleukin-6: from basic science to medicine—40 years in immunology. Annu Rev Immunol 23:1–21

    Article  PubMed  CAS  Google Scholar 

  99. Atreya R, Mudter J, Finotto S, Mullberg J, Jostock T, Wirtz S et al (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat Med 6:583–588

    Article  PubMed  CAS  Google Scholar 

  100. Reinisch W, Gasche C, Tillinger W, Wyatt J, Lichtenberger C, Willheim M et al (1999) Clinical relevance of serum interleukin-6 in Crohn's disease: single point measurements, therapy monitoring, and prediction of clinical relapse. Am J Gastroenterol 94:2156–2164

    Article  PubMed  CAS  Google Scholar 

  101. Ito H, Takazoe M, Fukuda Y, Hibi T, Kusugami K, Andoh A et al (2004) A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease. Gastroenterology 126:989–996, discussion 947

    Article  PubMed  CAS  Google Scholar 

  102. Dominitzki S, Fantini MC, Neufert C, Nikolaev A, Galle PR, Scheller J et al (2007) Cutting edge: trans-signaling via the soluble IL-6R abrogates the induction of FoxP3 in naive CD4+CD25 T cells. J Immunol 179:2041–2045

    PubMed  CAS  Google Scholar 

  103. Atreya R, Neurath MF (2008) Signaling molecules: the pathogenic role of the IL-6/STAT-3 trans signaling pathway in intestinal inflammation and in colonic cancer. Curr Drug Targets 9:369–374

    Article  PubMed  CAS  Google Scholar 

  104. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  PubMed  CAS  Google Scholar 

  105. Becker C, Fantini MC, Wirtz S, Nikolaev A, Lehr HA, Galle PR et al (2005) IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 4:217–220

    Article  PubMed  CAS  Google Scholar 

  106. Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A et al (2004) TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21:491–501

    Article  PubMed  CAS  Google Scholar 

  107. Tebbutt NC, Giraud AS, Inglese M, Jenkins B, Waring P, Clay FJ et al (2002) Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat Med 8:1089–1097

    Article  PubMed  CAS  Google Scholar 

  108. Gerlach K, Daniel C, Lehr HA, Nikolaev A, Gerlach T, Atreya R et al (2012) Transcription factor NFATc2 controls the emergence of colon cancer associated with IL-6-dependent colitis. Cancer Res 72(17):4340–4350

    Article  PubMed  CAS  Google Scholar 

  109. Grivennikov SI, Karin M (2011) Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis 70(Suppl 1):i104–i108

    Article  PubMed  CAS  Google Scholar 

  110. Putoczki T, Ernst M (2010) More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J Leukoc Biol. doi:10.1186/1747-1028-5-14

  111. Waldner MJ, Wirtz S, Jefremow A, Warntjen M, Neufert C, Atreya R et al (2010) VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer. J Exp Med 207:2855–2868

    Article  PubMed  CAS  Google Scholar 

  112. Kullberg MC, Jankovic D, Feng CG, Hue S, Gorelick PL, McKenzie BS et al (2006) IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med 203:2485–2494

    Article  PubMed  CAS  Google Scholar 

  113. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ et al (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464:1371–1375

    Article  PubMed  CAS  Google Scholar 

  114. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B et al (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116:1310–1316

    Article  PubMed  CAS  Google Scholar 

  115. Cox JH, Kljavin NM, Ota N, Leonard J, Roose-Girma M, Diehl L et al (2012) Opposing consequences of IL-23 signaling mediated by innate and adaptive cells in chemically induced colitis in mice. Mucosal Immunol 5:99–109

    Article  PubMed  CAS  Google Scholar 

  116. Duerr RH (2007) Genome-wide association studies herald a new era of rapid discoveries in inflammatory bowel disease research. Gastroenterology 132:2045–2049

    Article  PubMed  CAS  Google Scholar 

  117. Wirtz S, Neurath MF (2007) Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev 59:1073–1083

    Article  PubMed  CAS  Google Scholar 

  118. Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K et al (2006) IL-23 promotes tumour incidence and growth. Nature 442:461–465

    Article  PubMed  CAS  Google Scholar 

  119. Langowski JL, Kastelein RA, Oft M (2007) Swords into plowshares: IL-23 repurposes tumor immune surveillance. Trends Immunol 28:207–212

    Article  PubMed  CAS  Google Scholar 

  120. Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO et al (2007) Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 67:9721–9730

    Article  PubMed  CAS  Google Scholar 

  121. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Österreicher CH, Hung KE, Datz C, Feng Y, Fearon ER, Oukka M, Tessarollo L, Coppola V, Yarovinsky F, Cheroutre H, Eckmann L, Trinchieri G, Karin M (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature doi:10.1038/nature11465

  122. Hyun YS, Han DS, Lee AR, Eun CS, Youn J, Kim HY (2012) Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis 33:931–936

    Article  PubMed  CAS  Google Scholar 

  123. Chae WJ, Gibson TF, Zelterman D, Hao L, Henegariu O, Bothwell AL (2010) Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. Proc Natl Acad Sci U S A 107:5540–5544

    Article  PubMed  CAS  Google Scholar 

  124. Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L et al (2008) Regulation of inflammatory responses by IL-17F. J Exp Med 205:1063–1075

    Article  PubMed  CAS  Google Scholar 

  125. Chae WJ, Bothwell AL (2011) IL-17F deficiency inhibits small intestinal tumorigenesis in ApcMin/+ mice. Biochem Biophys Res Commun 414:31–36

    Article  PubMed  CAS  Google Scholar 

  126. Tong Z, Yang XO, Yan H, Liu W, Niu X, Shi Y et al (2012) A protective role by interleukin-17F in colon tumorigenesis. PLoS One 7:e34959

    Article  PubMed  CAS  Google Scholar 

  127. Leppkes M, Becker C, Ivanov II, Hirth S, Wirtz S, Neufert C et al (2009) RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 136:257–267

    Article  PubMed  CAS  Google Scholar 

  128. Kesselring R, Jauch D, Fichtner-Feigl S (2012) Interleukin 21 impairs tumor immunosurveillance of colitis-associated colorectal cancer. Oncoimmunology 1:537–538

    Article  PubMed  Google Scholar 

  129. Stolfi C, Rizzo A, Franze E, Rotondi A, Fantini MC, Sarra M et al (2011) Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J Exp Med 208:2279–2290

    Article  PubMed  CAS  Google Scholar 

  130. Jauch D, Martin M, Schiechl G, Kesselring R, Schlitt HJ, Geissler EK et al (2011) Interleukin 21 controls tumour growth and tumour immunosurveillance in colitis-associated tumorigenesis in mice. Gut 60:1678–1686

    Article  PubMed  CAS  Google Scholar 

  131. Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317:124–127

    Article  PubMed  CAS  Google Scholar 

  132. Rakoff-Nahoum S, Medzhitov R (2008) Role of toll-like receptors in tissue repair and tumorigenesis. Biochemistry (Mosc) 73:555–561

    Article  CAS  Google Scholar 

  133. Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM et al (2010) MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med 207:1625–1636

    Article  PubMed  CAS  Google Scholar 

  134. Normand S, Delanoye-Crespin A, Bressenot A, Huot L, Grandjean T, Peyrin-Biroulet L et al (2011) Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc Natl Acad Sci U S A 108:9601–9606

    Article  PubMed  CAS  Google Scholar 

  135. Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB et al (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207:1045–1056

    Article  PubMed  CAS  Google Scholar 

  136. Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC et al (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36:742–754

    Article  PubMed  CAS  Google Scholar 

  137. Wan YY, Flavell RA (2008) TGF-beta and regulatory T cell in immunity and autoimmunity. J Clin Immunol 28:647–659

    Article  PubMed  CAS  Google Scholar 

  138. Uronis JM, Muhlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C (2009) Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One 4:e6026

    Article  PubMed  CAS  Google Scholar 

  139. Fantini MC, Rizzo A, Fina D, Caruso R, Sarra M, Stolfi C et al (2009) Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology 136(1308–1316):e1301–e1303

    Google Scholar 

  140. Rizzo A, Waldner MJ, Stolfi C, Sarra M, Fina D, Becker C et al (2011) Smad7 expression in T cells prevents colitis-associated cancer. Cancer Res 71:7423–7432

    Article  PubMed  CAS  Google Scholar 

  141. Dube PE, Yan F, Punit S, Girish N, McElroy SJ, Washington MK et al (2012) Epidermal growth factor receptor inhibits colitis-associated cancer in mice. J Clin Invest 122(8):2780–2792

    Article  PubMed  CAS  Google Scholar 

  142. Cohen DJ, Hochster HS (2008) Rationale for combining biotherapy in the treatment of advanced colon cancer. Gastrointest Cancer Res 2:145–151

    PubMed  Google Scholar 

  143. Sartor RB (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134:577–594

    Article  PubMed  CAS  Google Scholar 

  144. Blaser MJ (2010) Harnessing the power of the human microbiome. Proc Natl Acad Sci U S A 107:6125–6126

    Article  PubMed  CAS  Google Scholar 

  145. Othman M, Aguero R, Lin HC (2008) Alterations in intestinal microbial flora and human disease. Curr Opin Gastroenterol 24:11–16

    Article  PubMed  Google Scholar 

  146. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  PubMed  Google Scholar 

  147. Rowland IR (2009) The role of the gastrointestinal microbiota in colorectal cancer. Curr Pharm Des 15:1524–1527

    Article  PubMed  CAS  Google Scholar 

  148. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286

    Article  PubMed  CAS  Google Scholar 

  149. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  PubMed  CAS  Google Scholar 

  150. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    PubMed  CAS  Google Scholar 

  151. Li Y, Kundu P, Seow SW, de Matos CT, Aronsson L, Chin KC et al (2012) Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 33:1231–1238

    Article  PubMed  CAS  Google Scholar 

  152. Dove WF, Clipson L, Gould KA, Luongo C, Marshall DJ, Moser AR et al (1997) Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res 57:812–814

    PubMed  CAS  Google Scholar 

  153. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498

    Article  PubMed  CAS  Google Scholar 

  154. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB et al (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–349

    Article  PubMed  CAS  Google Scholar 

  155. Kim SC, Tonkonogy SL, Karrasch T, Jobin C, Sartor RB (2007) Dual-association of gnotobiotic IL-10−/− mice with 2 nonpathogenic commensal bacteria induces aggressive pancolitis. Inflamm Bowel Dis 13:1457–1466

    Article  PubMed  Google Scholar 

  156. Kullberg MC, Ward JM, Gorelick PL, Caspar P, Hieny S, Cheever A et al (1998) Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent mechanism. Infect Immun 66:5157–5166

    PubMed  CAS  Google Scholar 

  157. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625

    Article  PubMed  CAS  Google Scholar 

  158. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  PubMed  CAS  Google Scholar 

  159. Round JL, O'Connell RM, Mazmanian SK (2010) Coordination of tolerogenic immune responses by the commensal microbiota. J Autoimmun 34:J220–J225

    Article  PubMed  CAS  Google Scholar 

  160. Arthur JC, Jobin C (2011) The struggle within: microbial influences on colorectal cancer. Inflamm Bowel Dis 17:396–409

    Article  PubMed  Google Scholar 

  161. Strober W, Fuss IJ (2006) Experimental models of mucosal inflammation. Adv Exp Med Biol 579:55–97

    Article  PubMed  CAS  Google Scholar 

  162. Kolida S, Gibson GR (2011) Synbiotics in health and disease. Annu Rev Food Sci Technol 2:373–393

    Article  PubMed  Google Scholar 

  163. Chichlowski M, Sharp JM, Vanderford DA, Myles MH, Hale LP (2008) Helicobacter typhlonius and Helicobacter rodentium differentially affect the severity of colon inflammation and inflammation-associated neoplasia in IL10-deficient mice. Comp Med 58:534–541

    PubMed  CAS  Google Scholar 

  164. Newman JV, Kosaka T, Sheppard BJ, Fox JG, Schauer DB (2001) Bacterial infection promotes colon tumorigenesis in Apc(Min/+) mice. J Infect Dis 184:227–230

    Article  PubMed  CAS  Google Scholar 

  165. Issa M, Vijayapal A, Graham MB, Beaulieu DB, Otterson MF, Lundeen S et al (2007) Impact of Clostridium difficile on inflammatory bowel disease. Clin Gastroenterol Hepatol 5:345–351

    Article  PubMed  Google Scholar 

  166. Strober W, Fuss I, Mannon P (2007) The fundamental basis of inflammatory bowel disease. J Clin Invest 117:514–521

    Article  PubMed  CAS  Google Scholar 

  167. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP et al (2012) Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336:1314–1317

    Article  PubMed  CAS  Google Scholar 

  168. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105:15064–15069

    Article  PubMed  CAS  Google Scholar 

  169. Petersson J, Schreiber O, Hansson GC, Gendler SJ, Velcich A, Lundberg JO et al (2011) Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol Gastrointest Liver Physiol 300:G327–G333

    Article  PubMed  CAS  Google Scholar 

  170. Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB et al (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131:117–129

    Article  PubMed  CAS  Google Scholar 

  171. Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S et al (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295:1726–1729

    Article  PubMed  CAS  Google Scholar 

  172. Yang K, Popova NV, Yang WC, Lozonschi I, Tadesse S, Kent S et al (2008) Interaction of Muc2 and Apc on Wnt signaling and in intestinal tumorigenesis: potential role of chronic inflammation. Cancer Res 68:7313–7322

    Article  PubMed  CAS  Google Scholar 

  173. Khounlotham M, Kim W, Peatman E, Nava P, Medina-Contreras O, Addis C (2012) Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity 37(3):563–573

    Article  PubMed  CAS  Google Scholar 

  174. Iacucci M, Ghosh S (2011) Looking beyond symptom relief: evolution of mucosal healing in inflammatory bowel disease. Therap Adv Gastroenterol 4:129–143

    Article  PubMed  Google Scholar 

  175. Kiesslich R, Goetz M, Angus EM, Hu Q, Guan Y, Potten C et al (2007) Identification of epithelial gaps in human small and large intestine by confocal endomicroscopy. Gastroenterology 133:1769–1778

    Article  PubMed  Google Scholar 

  176. Kiesslich R, Duckworth CA, Moussata D, Gloeckner A, Lim LG, Goetz M et al (2012) Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut 61:1146–1153

    Article  PubMed  CAS  Google Scholar 

  177. Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J et al (2012) Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336:1321–1325

    Article  PubMed  CAS  Google Scholar 

  178. Fouts DE, Torralba M, Nelson KE, Brenner DA, Schnabl B (2012) Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol 56:1283–1292

    Article  PubMed  CAS  Google Scholar 

  179. Seki E, Schnabl B (2012) Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol 590:447–458

    Article  PubMed  CAS  Google Scholar 

  180. Yan AW, Schnabl B (2012) Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World J Hepatol 4:110–118

    Article  PubMed  Google Scholar 

  181. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338(6103):120–123

    Google Scholar 

  182. Scanlan PD, Shanahan F, Clune Y, Collins JK, O'Sullivan GC, O'Riordan M et al (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 10:789–798

    Article  PubMed  CAS  Google Scholar 

  183. Nanau RM, Neuman MG (2012) Metabolome and inflammasome in inflammatory bowel disease. Transl Res 160:1–28

    Article  PubMed  CAS  Google Scholar 

  184. Neuman MG, Nanau RM (2012) Inflammatory bowel disease: role of diet, microbiota, life style. Transl Res 160:29–44

    Article  PubMed  Google Scholar 

  185. Blumberg R, Powrie F (2012) Microbiota, disease, and back to health: a metastable journey. Sci Transl Med 4:137rv137

    Article  CAS  Google Scholar 

  186. Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML et al (2010) Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8:292–300

    Article  PubMed  CAS  Google Scholar 

  187. Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S et al (2007) Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131:33–45

    Article  PubMed  CAS  Google Scholar 

  188. Vijay-Kumar M, Sanders CJ, Taylor RT, Kumar A, Aitken JD, Sitaraman SV et al (2007) Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 117:3909–3921

    PubMed  CAS  Google Scholar 

  189. Chamaillard M, Dessein R (2011) Defensins couple dysbiosis to primary immunodeficiency in Crohn's disease. World J Gastroenterol 17:567–571

    Article  PubMed  Google Scholar 

  190. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–185

    PubMed  CAS  Google Scholar 

  191. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757

    Article  PubMed  CAS  Google Scholar 

  192. Hu B, Elinav E, Flavell RA (2011) Inflammasome-mediated suppression of inflammation-induced colorectal cancer progression is mediated by direct regulation of epithelial cell proliferation. Cell Cycle 10:1936–1939

    Article  PubMed  CAS  Google Scholar 

  193. Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C et al (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A 107:21635–21640

    Article  PubMed  Google Scholar 

  194. Chen GY, Shaw MH, Redondo G, Nunez G (2008) The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res 68:10060–10067

    Article  PubMed  CAS  Google Scholar 

  195. Ayres JS, Trinidad NJ, Vance RE (2012) Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat Med 18:799–806

    Article  PubMed  CAS  Google Scholar 

  196. Zakostelska Z, Kverka M, Klimesova K, Rossmann P, Mrazek J, Kopecny J et al (2011) Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS One 6:e27961

    Article  PubMed  CAS  Google Scholar 

  197. Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L et al (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8:110–120

    Article  PubMed  CAS  Google Scholar 

  198. Kverka M, Zakostelska Z, Klimesova K, Sokol D, Hudcovic T, Hrncir T et al (2011) Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol 163:250–259

    Article  PubMed  CAS  Google Scholar 

  199. Appleyard CB, Cruz ML, Isidro AA, Arthur JC, Jobin C, De Simone C (2011) Pretreatment with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer. Am J Physiol Gastrointest Liver Physiol 301:G1004–G1013

    Article  PubMed  CAS  Google Scholar 

  200. Uronis JM, Arthur JC, Keku T, Fodor A, Carroll IM, Cruz ML et al (2011) Gut microbial diversity is reduced by the probiotic VSL#3 and correlates with decreased TNBS-induced colitis. Inflamm Bowel Dis 17:289–297

    Article  PubMed  Google Scholar 

  201. Weissman JS, Coyle W (2012) Stool transplants: ready for prime time? Curr Gastroenterol Rep 14(4):313–316

    Google Scholar 

  202. El-Matary W, Simpson R, Ricketts-Burns N (2012) Fecal microbiota transplantation: are we opening a can of worms? Gastroenterology 143(2):e19

    Article  PubMed  Google Scholar 

  203. Brandt LJ (2012) Fecal transplantation for the treatment of Clostridium difficile infection. Gastroenterol Hepatol (N Y) 8:191–194

    Google Scholar 

  204. Holmes E, Kinross J, Gibson GR, Burcelin R, Jia W, Pettersson S et al (2012) Therapeutic modulation of microbiota-host metabolic interactions. Sci Transl Med 4:137rv136

    Article  CAS  Google Scholar 

  205. Rabizadeh S, Rhee KJ, Wu S, Huso D, Gan CM, Golub JE et al (2007) Enterotoxigenic bacteroides fragilis: a potential instigator of colitis. Inflamm Bowel Dis 13:1475–1483

    Article  PubMed  Google Scholar 

  206. Huycke MM, Abrams V, Moore DR (2002) Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 23:529–536

    Article  PubMed  CAS  Google Scholar 

  207. Strauss J, Kaplan GG, Beck PL, Rioux K, Panaccione R, Devinney R et al (2011) Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis 17:1971–1978

    Article  PubMed  Google Scholar 

  208. Strauss J, Kaplan GG, Beck PL, Rioux K, Panaccione R, Devinney R et al (2011) Invasive potential of gut mucosa-derived fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis 17(9):1971–1978

    Article  PubMed  Google Scholar 

  209. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298

    Article  PubMed  CAS  Google Scholar 

  210. Yang L, Pei Z (2006) Bacteria, inflammation, and colon cancer. World J Gastroenterol 12:6741–6746

    PubMed  CAS  Google Scholar 

  211. Sears CL, Pardoll DM (2011) Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. J Infect Dis 203:306–311

    Article  PubMed  Google Scholar 

  212. Klampfer L (2008) The role of signal transducers and activators of transcription in colon cancer. Front Biosci 13:2888–2899

    Article  PubMed  CAS  Google Scholar 

  213. Wu Y, Zhou BP (2009) Inflammation: a driving force speeds cancer metastasis. Cell Cycle 8(20):3267–3273

    Article  PubMed  CAS  Google Scholar 

  214. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  PubMed  CAS  Google Scholar 

  215. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    Article  PubMed  CAS  Google Scholar 

  216. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15:416–428

    Article  PubMed  CAS  Google Scholar 

  217. Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y et al (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A 100:2645–2650

    Article  PubMed  CAS  Google Scholar 

  218. Luo JL, Maeda S, Hsu LC, Yagita H, Karin M (2004) Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297–305

    Article  PubMed  CAS  Google Scholar 

  219. Bonecchi R, Galliera E, Borroni EM, Corsi MM, Locati M, Mantovani A (2009) Chemokines and chemokine receptors: an overview. Front Biosci 14:540–551

    Article  PubMed  CAS  Google Scholar 

  220. Wolf MJ, Hoos A, Bauer J, Boettcher S, Knust M, Weber A et al (2012) Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 22:91–105

    Article  PubMed  CAS  Google Scholar 

  221. Zucker S, Vacirca J (2004) Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 23:101–117

    Article  PubMed  CAS  Google Scholar 

  222. Mohammed FF, Smookler DS, Taylor SE, Fingleton B, Kassiri Z, Sanchez OH et al (2004) Abnormal TNF activity in Timp3−/− mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet 36:969–977

    Article  PubMed  CAS  Google Scholar 

  223. Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL et al (2007) Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446:690–694

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work was supported by the Crohn's and Colitis Foundation of America (CDA #2693) and Pathway to Independence Award from NIH (K99-DK088589) to S.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei I. Grivennikov.

Additional information

This article is a contribution to the special issue on Inflammation and Cancer—Guest Editor: Takuji Tanaka

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grivennikov, S.I. Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35, 229–244 (2013). https://doi.org/10.1007/s00281-012-0352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0352-6

Keywords

Navigation