Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the identifiability of metabolic network models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A major problem for the identification of metabolic network models is parameter identifiability, that is, the possibility to unambiguously infer the parameter values from the data. Identifiability problems may be due to the structure of the model, in particular implicit dependencies between the parameters, or to limitations in the quantity and quality of the available data. We address the detection and resolution of identifiability problems for a class of pseudo-linear models of metabolism, so-called linlog models. Linlog models have the advantage that parameter estimation reduces to linear or orthogonal regression, which facilitates the analysis of identifiability. We develop precise definitions of structural and practical identifiability, and clarify the fundamental relations between these concepts. In addition, we use singular value decomposition to detect identifiability problems and reduce the model to an identifiable approximation by a principal component analysis approach. The criterion is adapted to real data, which are frequently scarce, incomplete, and noisy. The test of the criterion on a model with simulated data shows that it is capable of correctly identifying the principal components of the data vector. The application to a state-of-the-art dataset on central carbon metabolism in Escherichia coli yields the surprising result that only \(4\) out of \(31\) reactions, and \(37\) out of \(100\) parameters, are identifiable. This underlines the practical importance of identifiability analysis and model reduction in the modeling of large-scale metabolic networks. Although our approach has been developed in the context of linlog models, it carries over to other pseudo-linear models, such as generalized mass-action (power-law) models. Moreover, it provides useful hints for the identifiability analysis of more general classes of nonlinear models of metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Strictly speaking, a better version of Definition 2 would require that condition (18) holds for almost all \(p^*\) in \(P\). This would automatically rule out trivial definitions of \(\hat{B}_{C(i),i}\) such as \(\hat{B}_{C(i),i}\triangleq B_{C(i),i}^*\) (which makes the reaction identifiable for any \(\alpha \) and \(\fancyscript{B}_i\) but cannot be built without the knowledge of \(B_{C(i),i}^*\) itself). Unfortunately, this is not a good choice in general, in that estimation uncertainty may severely depend on \(p^*\) itself, as we shall see later on in Example 4. For simplicity, here we stick to Definition 2 with the understanding that any such triviality is avoided.

  2. This holds as an equality in the sense of expectation, and can also be motivated by asymptotic arguments as \(q\rightarrow +\infty \).

References

  • Ashyraliyev M, Nanfack YF, Kaandorp J, Blom J (2009) Systems biology: parameter estimation for biochemical models. FEBS J 276(4):886–902

    Article  Google Scholar 

  • Bellu G, Saccomani M, Audoly S, D’Angiò L (2007) DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput Methods Programs Biomed 88(1):52–61

    Article  Google Scholar 

  • Bennett B, Kimball E, Gao M, Osterhout R, Dien SV, Rabinowitz J (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5(8):593–599

    Article  Google Scholar 

  • Berthoumieux S, Brilli M, de Jong H, Kahn D, Cinquemani E (2011) Identification of linlog models of metabolic networks from incomplete high-throughput datasets. Bioinformatics 27(13):i186–i195

    Article  Google Scholar 

  • Berthoumieux S, Kahn D, de Jong H, Cinquemani E (2012) Structural and practical identifiability of approximate metabolic network models. In: Proceedings of the 16th IFAC symposium on system identification (SYSID 2012), vol 16, Brussels, Belgium, pp 1719–1724

  • Bettenbrock K, Fischer S, Kremling A, Jahreis K, Sauter T, Gilles E (2006) A quantitative approach to catabolite repression in Escherichia coli. J Biol Chem 281(5):2578–2584

    Article  Google Scholar 

  • Brand M (2002) Incremental singular value decomposition of uncertain data with missing values. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) Proceedings of the 7th European conference on computer vision (ECCV 2002), Lecture Notes in Computer Science, vol 2350, Springer, pp 707–720

  • Chappell M, Godfrey K, Vajda S (1990) Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods. Math Biosci 102(1):41–73

    Article  MATH  Google Scholar 

  • Chen W, Nieper M, Sorger P (2010) Classic and contemporary approaches to modeling biochemical reactions. Genes Dev 24(17):1861–75

    Article  Google Scholar 

  • Chis O, Banga J, Balsa-Canto E (2011a) GenSSI: a software toolbox for structural identifiability analysis of biological models. Bioinformatics 27(18):2610–1

    Google Scholar 

  • Chis O, Banga J, Balsa-Canto E (2011b) Structural identifiability of systems biology models: a critical comparison of methods. PLoS One 6(11):e27,755

    Google Scholar 

  • Chou IC, Voit E (2009) Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci 219(2):57–83

    Article  MathSciNet  MATH  Google Scholar 

  • Cobelli C, DiStefano J (1980) Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. Am J Physiol 239(1):R7–24

    Google Scholar 

  • Crampin E (2006) System identification challenges from systems biology. In: Proceedings of the 14th IFAC symposium on system identification (SYSID 2006), Newcastle, pp 81–93

  • Delgado X, Liao J (1992) Metabolic control analysis using transient metabolite concentrations. Biochem J 285:965–72

    Google Scholar 

  • Gutenkunst R, Waterfall J, Casey F, Brown K, Myers C, Sethna J (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 3(10):e189

    Article  MathSciNet  Google Scholar 

  • Hardiman T, Lemuth K, Reuss MKM, Siemann-Herzberg M (2007) Topology of the global regulatory network of carbon limitation in Escherichia coli. J Biotechnol 132(4):359–374

    Article  Google Scholar 

  • Hatzimanikatis V, Bailey J (1997) Effects of spatiotemporal variations on metabolic control: approximate analysis using (log)linear kinetic models. Biotechnol Bioeng 54(2):91–104

    Article  Google Scholar 

  • Heijnen J (2005) Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng 91(5):534–45

    Article  Google Scholar 

  • Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman& Hall, New York

    Book  MATH  Google Scholar 

  • van Huffel S, Vandewalle J (1991) The total least squares problems: computational aspects and analysis. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho P, Kakazu Y, Sugawara K, Igarashi S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita M (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316(5824):593–597

    Article  Google Scholar 

  • Jaqaman K, Danuser G (2006) Linking data to models: data regression. Nat Rev Mol Cell Biol 7(11):813–9

    Article  Google Scholar 

  • Jolliffe I (1986) Principal component analysis. Springer, Berlin

    Book  Google Scholar 

  • de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103

    Article  Google Scholar 

  • Kotte O, Zaugg J, Heinemann M (2010) Bacterial adaptation through distributed sensing of metabolic fluxes. Mol Syst Biol 6:355

    Article  Google Scholar 

  • Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 3:41

    Article  Google Scholar 

  • Ljung L (1999) System identification, theory for the user. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Maiwald T, Timmer J (2008) Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics 24(18):2037–2043

    Article  Google Scholar 

  • Nemcova J (2010) Structural identifiability of polynomial and rational systems. Math Biosci 223(2):83–96

    Article  MathSciNet  MATH  Google Scholar 

  • Nikerel I, van Winden W, Verheijen P, Heijnen J (2009) Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics. Metab Eng 11(1):20–30

    Article  Google Scholar 

  • Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25(15):1923–29

    Article  Google Scholar 

  • Raue A, Kreutz C, Maiwald T, Klingmüller U, Timmer J (2011) Addressing parameter identifiability by model-based experimentation. IET Syst Biol 5(2):120–30

    Article  Google Scholar 

  • Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135(2):175–201

    Article  MathSciNet  Google Scholar 

  • Sands P, Voit E (1996) Flux-based estimation of parameters in S-systems. Ecol Model 93(1–3):75–88

    Article  Google Scholar 

  • Savageau M (1976) Biochemical systems analysis: a study of function and design in molecular biology. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Srinath S, Gunawan R (2010) Parameter identifiability of power-law biochemical system models. J Biotechnol 149(3):132–140

    Article  Google Scholar 

  • Visser D, Heijnen J (2003) Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab Eng 5(3):164–76

    Article  Google Scholar 

  • Voit E, Almeida J, Marino S, Lall R, Goel G, Neves A, Santos H (2006a) Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study. IET Syst Biol 153(4):286–298

    Article  Google Scholar 

  • Voit E, Neves A, Santos H (2006b) The intricate side of systems biology. Proc Natl Acad Sci USA 103(25):9452–7

    Article  Google Scholar 

  • Walter E, Pronzato L (1997) Identification of parametric models. Springer, New York

    MATH  Google Scholar 

  • Xia X, Moog C (2003) Identifiability of nonlinear systems with application to HIV/AIDS models. IEEE Trans Autom Control 2:330–336

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Cinquemani.

Additional information

This work was supported by the Agence Nationale de la Recherche under project MetaGenoReg (ANR-06-BYOS-0003).

Appendices

Appendix A: Notation and terminology

\(\mathbb R , \mathbb R _{> 0}, \mathbb Z \) and \(\mathbb N \) denote the sets of real, positive real, integer and positive natural numbers, respectively. For an index \(n\in \mathbb N , \mathbb R ^n\) and \(\mathbb R _{> 0}^n\) denote the \(n\) dimensional versions of \(\mathbb R \) and \(\mathbb R _{> 0}\). \(I\) denotes an identity matrix of dimension fixed by the context.

Let \(M\) be any matrix. For two indices \(i\) and \(j\) and a vector of indices \(C\) compatible with the dimensions of \(M, M_i\) denotes the \(i\)th column of \(M, M_{C}\) denotes the submatrix of \(M\) formed by the columns of \(M\) with indices \(C, M_{j,i}\) denotes the element of \(M\) in row \(j\) and column \(i\), and \(M_{j,C}\) denotes the row vector formed by the elements of \(M\) in row \(j\) and columns indexed by \(C\). \([M]_{C,C}\) denotes the minor formed by the rows and columns indexed by \(C\). When convenient, notation \(M_{i:i^{\prime }}\) with \(i^{\prime }\ge i\) is used instead of \(M_C\) with \(C=\begin{bmatrix}i,i+1,\ldots ,i^{\prime }\end{bmatrix}\). For vectors, a subscript \(i\) refers to the \(i\)th element of the vector.

For a square matrix \(\Sigma , \Sigma > 0\) (resp. \(\Sigma \ge 0\)) means that \(\Sigma \) is positive definite (resp. semidefinite). For a vector \(\mu \) of suitable dimension, \(\varepsilon \sim \fancyscript{N}(\mu ,\Sigma )\) means that \(\varepsilon \) is a Gaussian random vector with mean \(\mu \) and covariance matrix \(\Sigma \). For a scalar quantity observed in Gaussian noise with standard deviation \(\nu \), a noise level of \(N~\%\), with \(N\in \mathbb R _{\ge 0}\), will stand for a value of \(\nu \) such that \(\nu \) is equal to \(N~\%\) of the value of that quantity (such that \(\simeq \)99 % of the noise outcomes fall within \(\pm 3\cdot N~\%\) of the observed quantity).

For two vectors \(v\) and \(e\) of equal size, both \(v/e\) and \(\frac{v}{e}\) indicate the vector obtained by element-wise division. Given a vector sequence \(v^1,\ldots , v^q\), \(\bar{v}\) is the mean \((1/q)\sum _{k=1}^q v^k\). For vectors and sets, \(|\cdot |\) denotes vector dimension and set cardinality, respectively. For a function \(f:A\rightarrow B\), \(f|_D\) indicates its restriction on \(D\subseteq A\).

Appendix B: Mathematical proofs

Proposition 1

A reaction \(i\) of \(\fancyscript{M}_p\) is structurally identifiable at \(p^*\) if and only if there exists \(D=\{ (e^1,u^1), \ldots , (e^q,u^q)\} \subseteq E\times U\) such that the solution of the equation \(W_i^*=Y^* B_i^*\), with

$$\begin{aligned} W_i^*&= \begin{bmatrix}\left(\frac{J_{*}^1}{e^1} - \overline{\left(\frac{J_{*}}{e}\right)}\right)_i&\cdots&\left(\frac{J_{*}^q}{e^q} - \overline{\left(\frac{J_{*}}{e}\right)}\right)_i \end{bmatrix}^T,\\ Y^*&= \begin{bmatrix} \ln x^1_* - \overline{\ln x_*}&\cdots&\ln x^q_* - \overline{\ln x_*}\\ \ln u^1 - \overline{\ln u}&\cdots&\ln u^q - \overline{\ln u} \end{bmatrix}^T, \end{aligned}$$

is unique in the parameters \(B_i^*=\big ([{B^x}^* \; {B^u}^*]^T\big )_{i}\).

Proof

(If) Assume that, for a given \(D \subseteq E\times U\), the solution of \(W_i^*=Y^* B_i^*\) is unique. We need to prove that \(\big ((J_p)_i,x_p\big )|_D = \big ((J_{p^*})_i,x_{p^*}\big )|_D\) implies \(p_i=p_i^*\). For simplicity, here we drop index \(i\) from subscripts.

Given any two parameters \(p^*=\begin{bmatrix}a^*&{B^*}^T\end{bmatrix}^T\) and \(p=\begin{bmatrix}a&B^T\end{bmatrix}^T\), for which \(\fancyscript{M}_p:(e,u)\mapsto (J_p,x_p)\) and \(\fancyscript{M}_{p^*}:(e,u)\mapsto (J_{p^*},x_{p^*})\), it holds by construction that \(W=YB\) and \(W^*=YB^*\). If \((J_p,x_p)|_D = (J_{p^*},x_{p^*})|_D\), then it also holds that \(Y=Y^*\) and \(W=W^*\), therefore we can write \(W^*=Y^*B\). Because the solution in \(B\) of the latter is unique and one solution is \(B^*\), it follows that \(B=B^*\). To conclude that \(p=p^*\), we are left with showing that \(a=a^*\). This follows from

$$\begin{aligned} a^* =\overline{\left(\frac{J_{*}}{e}\right)}-\begin{bmatrix} \overline{\ln x_*} \\ \overline{\ln u}\end{bmatrix}^T \cdot B^* = \overline{\left(\frac{J}{e}\right)}-\begin{bmatrix} \overline{\ln x} \\ \overline{\ln u}\end{bmatrix}^T \cdot B = a. \end{aligned}$$

(Only if) Here the hypothesis is that, for a given \(D \subseteq E\times U\), \(\big ((J_p)_i,x_p\big )|_D = \big ((J_{p^*})_i,x_{p^*}\big )|_D\) implies \(p_i=p^*_i\), and we need to show that the solution in \(B_i\) of \(W_i^* = Y^* B_i\) is unique. For simplicity, we will again drop \(i\) from the subscripts.

For the sake of contradiction, assume that \(W^* = Y^* B\) admits distinct solutions. Since \(B^*\) is a solution, all solutions are of the form \(B=B^*+z\), with \(z\) in the nontrivial kernel of \(Y^*\). For any such \(z\) we can write \(Y^*B^*=Y^*(B^*+z)\), i.e., \(\forall (e,u)\in D\),

$$\begin{aligned} \begin{bmatrix} (\ln x_* \!-\!\overline{\ln x_*})^T&(\ln u_* \!-\!\overline{\ln u_*})^T \end{bmatrix}B^*\!=\! \begin{bmatrix} (\ln x_* \!-\!\overline{\ln x_*})^T&(\ln u_* \!-\!\overline{\ln u_*})^T \end{bmatrix}(B^*\!+\!z).\nonumber \\ \end{aligned}$$
(28)

Let \(p^*=\begin{bmatrix}a^*&{B^*}^T\end{bmatrix}^T\). For any \((e,u)\in D, J_*=J_{p^*}(e,u)\) and \(x_*=x_{p^*}(e,u)\) are given by the solution of

$$\begin{aligned} 0&= N J_{p^*}, \\ J_{p^*}&= \mathrm{{diag}}(e) \cdot (a^* + \begin{bmatrix} \ln x_*^T&\ln u_*^T\end{bmatrix}B^* )\nonumber \end{aligned}$$
(29)

(which is unique by virtue of Assumption 1). Using (28), term \(\begin{bmatrix} \ln x_*^T&\ln u_*^T\end{bmatrix}B^*\) can be rewritten as \(\begin{bmatrix} \ln x_*^T&\ln u_*^T \end{bmatrix}(B^*+z) - \begin{bmatrix} \overline{\ln x_*^T}&\overline{\ln u_*^T}\end{bmatrix}z\). Replacing this into (29) yields

$$\begin{aligned} 0&= N J_*, \\ J_*&\!=\!&\mathrm{{diag}}(e) \cdot \big ( \underbrace{(a^* \!-\! \begin{bmatrix} \overline{\ln x_*^T} \quad \overline{\ln u_*^T} \end{bmatrix} z)}_{\triangleq a} \!+\! \begin{bmatrix} \ln x_*^T&\ln u_*^T \end{bmatrix} \underbrace{(B^*+z)}_{=B} \big ),\qquad \forall (e,u)\in D. \end{aligned}$$

From this we see that \(p=\begin{bmatrix}a&{B}^T\end{bmatrix}^T\), with \(a\) defined as above, is different from \(p^*\) but is such that \(\big (J_p(e,u),x_p(e,u)\big )=\big (J_{p^*}(e,u),x_{p^*}(e,u)\big )\) for all \((e,u)\in D\), which contradicts the hypothesis. \(\square \)

Corollary 1

A reaction \(i\) of \(\fancyscript{M}_p\) is structurally identifiable at \(p^*\) if and only if there exists \(D=\{ (e^1,u^1) \,, \, \cdots \,, (e^q,u^q)\}\subseteq E\times U\) such that \(Y^*_{C(i)}\) is full column-rank.

Proof

From Proposition 1, we know that identifiability is equivalent to the uniqueness of the solution in \(B_i\) of \(W_i^* = Y^* B_i\), i.e. of the solution in \(B_{C(i),i}\) of \(W_i^* = Y^*_{C(i)} B_{C(i),i}\) (the elements of \(B_i\) not included in \(B_{C(i),i}\) are set to zero by definition). Uniqueness holds if and only if \(\ker (Y^*_{C(i)})=\{0\}\), i.e. \(Y^*_{C(i)}\) is full column-rank or equivalently \(\mathrm{{rank}}(Y^*_{C(i)})=n_i\). \(\square \)

Proposition 2

If a reaction \(i\) of \(\fancyscript{M}_p\) is structurally identifiable at \(p^*\) in the sense of Definition 1 then, for every \(\alpha \in (0,1)\), it is practically identifiable in the sense of Definition 2 with confidence level at least \(1-\alpha \) for any uncertainty set \(\fancyscript{B}_i\supseteq \fancyscript{E}_{\widehat{\Sigma }}(\alpha )\), where \(\fancyscript{E}_{\widehat{\Sigma }}(\alpha )\) denotes the \((1-\alpha )\)-confidence ellipsoid of a zero-mean Gaussian distribution with variance \(\widehat{\Sigma }=(Y_{C(i)}^T\Sigma _{\varepsilon _{i}}^{-1} Y_{C(i)})^{-1}\).

Proof

The definition of \(\fancyscript{M}_p\) ensures that \(W_i^* = Y_{C(i)}^* B_{C(i),i}^*\). Using the fact that \(Y^*=Y\) and \(W^*=W\), given a noisy dataset \(\tilde{W}_i = W_i + \varepsilon _i\) and the errorless dataset \(Y\), the regression problem becomes

$$\begin{aligned} \tilde{W}_i=Y_{C(i)}\cdot B^*_{C(i),i}+\varepsilon _i. \end{aligned}$$
(30)

From Sect. 3.1, identifiability of \(\fancyscript{M}_p\) at \(p^*\) for the given input set \(D\) is equivalent to \(Y_{C(i)}^*=Y_{C(i)}\) being full column-rank. Thus, if \(D\) ensures structural identifiability of \(\fancyscript{M}_p\) at \(p^*\), \(Y_{C(i)}\) is full column-rank and the weighted pseudoinverse of \(Y_{C(i)}\), defined as \(Y^\dag \triangleq \left(Y_{C(i)}^T\Sigma _{\varepsilon _{i}}^{-1}Y_{C(i)}\right)^{-1} Y^T\Sigma _{\varepsilon _{i}}^{-1}\), is well-defined. This enables us to define the minimum variance estimator of \(B^*_{C(i),i}\), \(\hat{B}_{C(i),i}= Y^\dag W_i\). From the linearity of the estimator in the Gaussian noise \(\varepsilon _{i}\), after simple calculations of first and second-order moments, one gets \(\hat{B}_{C(i),i}\sim \fancyscript{N}\left(B^*_{C(i),i},\widehat{\Sigma }\right)\) (also compare Ljung 1999, Appendix II). Thus, from the definition of \(\fancyscript{B}_i\), \(\mathbb P _{p^*} [\hat{B}_{C(i),i}-B^*_{C(i),i}\in \fancyscript{B}_i]\ge \mathbb P _{p^*} [\hat{B}_{C(i),i}-B^*_{C(i),i}\in \fancyscript{E}_{\widehat{\Sigma }}(\alpha )] = 1-\alpha \). \(\square \)

Proposition 3

Let index \(j\) be an element of \(C(i)\), i.e., for some \(\ell \!=\!1,\ldots , n_i\), \(j\!=\!C_\ell (i)\). Suppose that the entries of \(V_{\ell ,r+1:n_i}\) are all zero (that is, the \(\ell \)th entry of all vectors in \(K_Y\) is identically zero). If \(\breve{B}_i\) is the (unique) solution to (22), then \(B_{j,i}\!=\!V_{\ell ,1:r}\breve{B}_{i}\) is uniquely determined.

Proof

Given the (unique) solution \(\breve{B}_i\) to Eq. (22), recall that all possible solutions in the original parameter space have the form \(B_{C(i),i}=V_{1:r}\cdot \breve{B}_i+k_Y\), for some \(k_Y\in K_Y=\mathrm{{range}}\{V_{r+1:n_i}\}\). That is, \(B_{C(i),i}=V_{1:r}\cdot \breve{B}_i+V_{r+1:n_i}h\) for some (column) vector \(h\in \mathbb R ^{n_i-r}\). Suppose that a row index \(\ell \) exists such that \(V_{\ell ,r+1:n_i}\) is a null row. Clearly, for any \(h\), \(V_{\ell ,r+1:n_i}h=0\). It follows that the \(\ell \)th row of \(B_{C(i),i}\) is given by \(V_{\ell ,1:r}\cdot \breve{B}_i+V_{\ell ,r+1:n_i}h=V_{\ell ,1:r} \cdot \breve{B}_i\), i.e. it is uniquely determined (independent of \(h\)). Since the \(\ell \)th row of \(B_{C(i),i}\) corresponds to \(B_{j,i}\) by the definition of \(j\), the assertion is proven. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthoumieux, S., Brilli, M., Kahn, D. et al. On the identifiability of metabolic network models. J. Math. Biol. 67, 1795–1832 (2013). https://doi.org/10.1007/s00285-012-0614-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0614-x

Keywords

Mathematics Subject Classification (2000)

Navigation