Abstract
Immunotherapies emerged as an alternative for cancer treatment, yet their clinical efficacies are still limited, especially in case of solid tumors. Myeloid immune cells, such as macrophages and myeloid-derived suppressor cells (MDSCs), are often hijacked by tumors and become pivotal inhibitors of antitumor immunity. Immunosuppressive functions of tumor-associated myeloid cells result from the activity of Signal Transducer and Activator of Transcription 3 (STAT3), a transcription factor with well-defined tumorigenic and tolerogenic roles in human cancers. To overcome challenges in the development of pharmacological STAT3 inhibitors, we recently developed oligonucleotide-based strategies for cell-selective, in vivo STAT3 targeting. Conjugation of a STAT3siRNA or decoy STAT3 inhibitors to synthetic Toll-like Receptor 9 (TLR9) agonists, CpG oligonucleotides, allowed for selective delivery into TLR9-positive cells. Cellular target for CpG-STAT3 inhibitors include non-malignant, tumor-associated myeloid cells, such as polymorphonuclear MDSCs, as well as cancer cells in acute myeloid leukemia, B cell lymphoma and in certain solid tumors. The chemically modified CpG-STAT3 inhibitors resist serum nucleases and thus can be administered intravenously. Their potency relies on the intracellular gain-of-function effect: release of the central immune checkpoint regulator (STAT3) to unleash proinflammatory signaling (CpG/TLR9) in the same antigen-presenting cell. At the cellular level, CpG-STAT3 inhibitors exert two-pronged effect by rescuing T cells from the immune checkpoint control while decreasing survival of cancer cells. In this article, we review the preclinical data on CpG-STAT3 inhibitors and discuss perspectives of using TLR9-targeted delivery of oligonucleotide therapeutics for the generation of novel, more effective and safer cancer immunotherapies.
Similar content being viewed by others
Abbreviations
- AML:
-
Acute myeloid leukemia
- ASO:
-
Antisense oligonucleotide
- CD:
-
Cluster of differentiation
- CMM:
-
Cbfb/Myh11/Mpl
- CTLA4:
-
Cytotoxic T-lymphocyte-associated protein 4
- DC:
-
Dendritic cell
- DLBCL:
-
Diffuse large B cell lymphoma
- dODN:
-
Decoy oligodeoxynucleotide
- Jak:
-
Janus kinase
- MDSC:
-
Myeloid-derived suppressor cell
- miRNA:
-
Micro RNA
- MTD:
-
Maximum tolerated dose
- NF-κB:
-
Nuclear factor κB
- NHL:
-
Non-Hodgkin lymphoma
- ODN:
-
Oligodeoxynucleotide
- ONT:
-
Oligonucleotide therapeutic
- PD-1:
-
Programmed cell death protein 1
- PMN:
-
Polymorphonuclear
- RAGE:
-
Receptor for advanced glycation endproducts
- RT:
-
Radiation therapy
- siRNA:
-
Short interfering RNA
- STAT3:
-
Signal transducer and activator of transcription 3
- TAM:
-
Tumor-associated macrophage
- TF:
-
Transcription factor
- TLR:
-
Toll-like receptor
References
Topalian SL, Weiner GJ, Pardoll DM (2011) Cancer immunotherapy comes of age. J Clin Oncol 29:4828–4836. doi:10.1200/JCO.2011.38.0899
Turley SJ, Cremasco V, Astarita JL (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15:669–682. doi:10.1038/nri3902
Gajewski TF (2015) The next hurdle in cancer immunotherapy: overcoming the non-T-cell-inflamed tumor microenvironment. Semin Oncol 42:663–671. doi:10.1053/j.seminoncol.2015.05.011
Kammertoens T, Schüler T, Blankenstein T (2005) Immunotherapy: target the stroma to hit the tumor. Trends Mol Med 11:225–231. doi:10.1016/j.molmed.2005.03.002
Fang H, Declerck YA (2013) Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 73:4965–4977. doi:10.1158/0008-5472.CAN-13-0661
Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268. doi:10.1038/nri3175
Engblom C, Pfirschke C, Pittet MJ (2016) The role of myeloid cells in cancer therapies. Nat Rev Cancer 16:447–462. doi:10.1038/nrc.2016.54
Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51. doi:10.1038/nri1995
Wang T, Niu G, Kortylewski M et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54. doi:10.1038/nm976
Kortylewski M, Kujawski M, Wang T et al (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321. doi:10.1038/nm1325
Kujawski M, Kortylewski M, Lee H et al (2008) Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118:3367–3377. doi:10.1172/JCI35213
Gao C, Kozlowska A, Nechaev S et al (2013) TLR9 signaling in the tumor microenvironment initiates cancer recurrence after radiotherapy. Cancer Res 73:7211–7221. doi:10.1158/0008-5472.CAN-13-1314
Hillmer EJ, Zhang H, Li HS, Watowich SS (2016) STAT3 signaling in immunity. Cytokine Growth Factor Rev. doi:10.1016/j.cytogfr.2016.05.001
Kortylewski M, Xin H, Kujawski M et al (2009) Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 15:114–123. doi:10.1016/j.ccr.2008.12.018
Haddad E (2015) STAT3: too much may be worse than not enough! Blood 125:583–584. doi:10.1182/blood-2014-11-610592
Cui W, Liu Y, Weinstein JS et al (2011) An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35:792–805. doi:10.1016/j.immuni.2011.09.017
Siegel AM, Heimall J, Freeman AF et al (2011) A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35:806–818. doi:10.1016/j.immuni.2011.09.016
Kortylewski M, Kujawski M, Herrmann A et al (2009) Toll-like receptor 9 activation of signal transducer and activator of transcription 3 constrains its agonist-based immunotherapy. Cancer Res 69:2497–2505. doi:10.1158/0008-5472.CAN-08-3031
Sen M, Grandis JR (2012) Nucleic acid-based approaches to STAT inhibition. JAKSTAT 1:285–291. doi:10.4161/jkst.22312
Kontzias A, Kotlyar A, Laurence A et al (2012) Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr Opin Pharmacol 12:464–470. doi:10.1016/j.coph.2012.06.008
Ratner M (2014) Setback for JAK2 inhibitors. Nat Biotechnol 32:119–119. doi:10.1038/nbt0214-119a
Kortylewski M, Nechaev S (2014) Cancer therapy using oligonucleotide-based STAT3 inhibitors: will they deliver? Ther Deliv 5:239–242. doi:10.4155/tde.13.152
Krieg AM (2012) CpG still rocks! Update on an accidental drug. Nucl Acid Ther 22:77–89. doi:10.1089/nat.2012.0340
Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995. doi:10.1038/ni1112
Canton J, Neculai D, Grinstein S (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13:621–634. doi:10.1038/nri3515
Gursel M, Gursel I, Mostowski HS, Klinman DM (2006) CXCL16 influences the nature and specificity of CpG-induced immune activation. J Immunol 177:1575–1580
Zhu P, Liu X, Treml LS et al (2009) Mechanism and regulatory function of CpG signaling via scavenger receptor B1 in primary B cells. J Biol Chem 284:22878–22887. doi:10.1074/jbc.M109.018580
Nechaev S, Gao C, Moreira D et al (2013) Intracellular processing of immunostimulatory CpG-siRNA: Toll-like receptor 9 facilitates siRNA dicing and endosomal escape. J Control Release 170:307–315. doi:10.1016/j.jconrel.2013.06.007
Józefowski S, Sulahian TH, Arredouani M, Kobzik L (2006) Role of scavenger receptor MARCO in macrophage responses to CpG oligodeoxynucleotides. J Leukoc Biol 80:870–879. doi:10.1189/jlb.0705357
Baumann CL, Aspalter IM, Sharif O et al (2010) CD14 is a coreceptor of Toll-like receptors 7 and 9. J Exp Med 207:2689–2701. doi:10.1084/jem.20101111
Lahoud MH, Ahmet F, Zhang J-G et al (2012) DEC-205 is a cell surface receptor for CpG oligonucleotides. Proc Natl Acad Sci USA 109:16270–16275. doi:10.1073/pnas.1208796109
Sirois CM, Jin T, Miller AL et al (2013) RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J Exp Med 210:2447–2463. doi:10.1084/jem.20120201
McKelvey KJ, Highton J, Hessian PA (2011) Cell-specific expression of TLR9 isoforms in inflammation. J Autoimmun 36:76–86. doi:10.1016/j.jaut.2010.11.001
Shatz M, Menendez D, Resnick MA (2012) The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells. Cancer Res 72:3948–3957. doi:10.1158/0008-5472.CAN-11-4134
Hossain DMS, Pal SK, Moreira D et al (2015) TLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients. Clin Cancer Res 21:3771–3782. doi:10.1158/1078-0432.CCR-14-3145
Zhang Q, Hossain DMS, Nechaev S et al (2013) TLR9-mediated siRNA delivery for targeting of normal and malignant human hematopoietic cells in vivo. Blood 121:1304–1315. doi:10.1182/blood-2012-07-442590
Moreira D, Zhang Q, Hossain DMS et al (2015) TLR9 signaling through NF-κB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells. Oncotarget 6:17302–17313. doi:10.18632/oncotarget.4029
Herrmann A, Cherryholmes G, Schroeder A et al (2014) TLR9 is critical for glioma stem cell maintenance and targeting. Cancer Res 74:5218–5228. doi:10.1158/0008-5472.CAN-14-1151
Rajora MA, Zheng G (2016) Targeting SR-BI for cancer diagnostics, imaging and therapy. Front Pharmacol 7:326. doi:10.3389/fphar.2016.00326
Kortylewski M, Swiderski P, Herrmann A et al (2009) In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 27:925–932. doi:10.1038/nbt.1564
Hossain DMS, Moreira D, Zhang Q et al (2016) TLR9-targeted SiRNA delivery in vivo. Methods Mol Biol 1364:183–196. doi:10.1007/978-1-4939-3112-5_15
Zhang Q, Hossain DMS, Duttagupta P et al (2016) Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood 127:1687–1700. doi:10.1182/blood-2015-08-665604
Hossain DMS, Santos C Dos, Zhang Q et al (2014) Leukemia cell-targeted STAT3 silencing and TLR9 triggering generate systemic antitumor immunity. Blood 123:15–25. doi:10.1182/blood-2013-07-517987
Ma Y, Kowolik CM, Swiderski PM et al (2011) Humanized Lewis-Y specific antibody based delivery of STAT3 siRNA. ACS Chem Biol 6:962–970. doi:10.1021/cb200176v
Nakamura N, Lill JR, Phung Q et al (2014) Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509:240–244. doi:10.1038/nature13133
Herrmann A, Kortylewski M, Kujawski M et al (2010) Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells. Cancer Res 70:7455–7464. doi:10.1158/0008-5472.CAN-10-0736
Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125:3356–3364. doi:10.1172/JCI80005
Bronte V, Brandau S, Chen S-H et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150. doi:10.1038/ncomms12150
Vasquez-Dunddel D, Pan F, Zeng Q et al (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 123:1580–1589. doi:10.1172/JCI60083
De Veirman K, Van Valckenborgh E, Lahmar Q et al (2014) Myeloid-derived suppressor cells as therapeutic target in hematological malignancies. Front Oncol 4:349. doi:10.3389/fonc.2014.00349
Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220. doi:10.1016/j.it.2016.01.004
Cheng F, Wang H, Horna P et al (2012) Stat3 inhibition augments the immunogenicity of B-cell lymphoma cells, leading to effective antitumor immunity. Cancer Res 72:4440–4448. doi:10.1158/0008-5472.CAN-11-3619
Decker T, Schneller F, Sparwasser T et al (2000) Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood 95:999–1006
Darnell JE (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2:740–749. doi:10.1038/nrc906
Zhang B, Li L, Chen C et al (2015) Knockdown (KD) of Mir-126 expression enhances tyrosine kinase inhibitor (TKI)-mediated targeting of chronic myelogenous leukemia (CML) stem cells. 57th Annual Meeting of American Society of Hematology, oral presentation, Orlando, FL. Blood 126:51
Acknowledgements
This work was supported in part by the National Cancer Institute/National Institutes of Health award number R01CA155367, P50CA107399, P30CA033572 (COH), the Department of Defense grant W81XWH-16-1-0499 and the STOP-CANCER Allison-Tovo-Dwyer Memorial Career-Development Award. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors are grateful to Dr. Peter Heinrich for critical reading of the manuscript and Dr. Sumanta Pal for thoughtful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interests.
Rights and permissions
About this article
Cite this article
Kortylewski, M., Moreira, D. Myeloid cells as a target for oligonucleotide therapeutics: turning obstacles into opportunities. Cancer Immunol Immunother 66, 979–988 (2017). https://doi.org/10.1007/s00262-017-1966-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00262-017-1966-2