Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Myeloid cells as a target for oligonucleotide therapeutics: turning obstacles into opportunities

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunotherapies emerged as an alternative for cancer treatment, yet their clinical efficacies are still limited, especially in case of solid tumors. Myeloid immune cells, such as macrophages and myeloid-derived suppressor cells (MDSCs), are often hijacked by tumors and become pivotal inhibitors of antitumor immunity. Immunosuppressive functions of tumor-associated myeloid cells result from the activity of Signal Transducer and Activator of Transcription 3 (STAT3), a transcription factor with well-defined tumorigenic and tolerogenic roles in human cancers. To overcome challenges in the development of pharmacological STAT3 inhibitors, we recently developed oligonucleotide-based strategies for cell-selective, in vivo STAT3 targeting. Conjugation of a STAT3siRNA or decoy STAT3 inhibitors to synthetic Toll-like Receptor 9 (TLR9) agonists, CpG oligonucleotides, allowed for selective delivery into TLR9-positive cells. Cellular target for CpG-STAT3 inhibitors include non-malignant, tumor-associated myeloid cells, such as polymorphonuclear MDSCs, as well as cancer cells in acute myeloid leukemia, B cell lymphoma and in certain solid tumors. The chemically modified CpG-STAT3 inhibitors resist serum nucleases and thus can be administered intravenously. Their potency relies on the intracellular gain-of-function effect: release of the central immune checkpoint regulator (STAT3) to unleash proinflammatory signaling (CpG/TLR9) in the same antigen-presenting cell. At the cellular level, CpG-STAT3 inhibitors exert two-pronged effect by rescuing T cells from the immune checkpoint control while decreasing survival of cancer cells. In this article, we review the preclinical data on CpG-STAT3 inhibitors and discuss perspectives of using TLR9-targeted delivery of oligonucleotide therapeutics for the generation of novel, more effective and safer cancer immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

ASO:

Antisense oligonucleotide

CD:

Cluster of differentiation

CMM:

Cbfb/Myh11/Mpl

CTLA4:

Cytotoxic T-lymphocyte-associated protein 4

DC:

Dendritic cell

DLBCL:

Diffuse large B cell lymphoma

dODN:

Decoy oligodeoxynucleotide

Jak:

Janus kinase

MDSC:

Myeloid-derived suppressor cell

miRNA:

Micro RNA

MTD:

Maximum tolerated dose

NF-κB:

Nuclear factor κB

NHL:

Non-Hodgkin lymphoma

ODN:

Oligodeoxynucleotide

ONT:

Oligonucleotide therapeutic

PD-1:

Programmed cell death protein 1

PMN:

Polymorphonuclear

RAGE:

Receptor for advanced glycation endproducts

RT:

Radiation therapy

siRNA:

Short interfering RNA

STAT3:

Signal transducer and activator of transcription 3

TAM:

Tumor-associated macrophage

TF:

Transcription factor

TLR:

Toll-like receptor

References

  1. Topalian SL, Weiner GJ, Pardoll DM (2011) Cancer immunotherapy comes of age. J Clin Oncol 29:4828–4836. doi:10.1200/JCO.2011.38.0899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turley SJ, Cremasco V, Astarita JL (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15:669–682. doi:10.1038/nri3902

    Article  CAS  PubMed  Google Scholar 

  3. Gajewski TF (2015) The next hurdle in cancer immunotherapy: overcoming the non-T-cell-inflamed tumor microenvironment. Semin Oncol 42:663–671. doi:10.1053/j.seminoncol.2015.05.011

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kammertoens T, Schüler T, Blankenstein T (2005) Immunotherapy: target the stroma to hit the tumor. Trends Mol Med 11:225–231. doi:10.1016/j.molmed.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  5. Fang H, Declerck YA (2013) Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 73:4965–4977. doi:10.1158/0008-5472.CAN-13-0661

    Article  CAS  PubMed  Google Scholar 

  6. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268. doi:10.1038/nri3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Engblom C, Pfirschke C, Pittet MJ (2016) The role of myeloid cells in cancer therapies. Nat Rev Cancer 16:447–462. doi:10.1038/nrc.2016.54

    Article  CAS  PubMed  Google Scholar 

  8. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51. doi:10.1038/nri1995

    Article  CAS  PubMed  Google Scholar 

  9. Wang T, Niu G, Kortylewski M et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54. doi:10.1038/nm976

    Article  PubMed  Google Scholar 

  10. Kortylewski M, Kujawski M, Wang T et al (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321. doi:10.1038/nm1325

    Article  CAS  PubMed  Google Scholar 

  11. Kujawski M, Kortylewski M, Lee H et al (2008) Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118:3367–3377. doi:10.1172/JCI35213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao C, Kozlowska A, Nechaev S et al (2013) TLR9 signaling in the tumor microenvironment initiates cancer recurrence after radiotherapy. Cancer Res 73:7211–7221. doi:10.1158/0008-5472.CAN-13-1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hillmer EJ, Zhang H, Li HS, Watowich SS (2016) STAT3 signaling in immunity. Cytokine Growth Factor Rev. doi:10.1016/j.cytogfr.2016.05.001

    PubMed  Google Scholar 

  14. Kortylewski M, Xin H, Kujawski M et al (2009) Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 15:114–123. doi:10.1016/j.ccr.2008.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haddad E (2015) STAT3: too much may be worse than not enough! Blood 125:583–584. doi:10.1182/blood-2014-11-610592

    Article  CAS  PubMed  Google Scholar 

  16. Cui W, Liu Y, Weinstein JS et al (2011) An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35:792–805. doi:10.1016/j.immuni.2011.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siegel AM, Heimall J, Freeman AF et al (2011) A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35:806–818. doi:10.1016/j.immuni.2011.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kortylewski M, Kujawski M, Herrmann A et al (2009) Toll-like receptor 9 activation of signal transducer and activator of transcription 3 constrains its agonist-based immunotherapy. Cancer Res 69:2497–2505. doi:10.1158/0008-5472.CAN-08-3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sen M, Grandis JR (2012) Nucleic acid-based approaches to STAT inhibition. JAKSTAT 1:285–291. doi:10.4161/jkst.22312

    PubMed  PubMed Central  Google Scholar 

  20. Kontzias A, Kotlyar A, Laurence A et al (2012) Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr Opin Pharmacol 12:464–470. doi:10.1016/j.coph.2012.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ratner M (2014) Setback for JAK2 inhibitors. Nat Biotechnol 32:119–119. doi:10.1038/nbt0214-119a

    Article  CAS  PubMed  Google Scholar 

  22. Kortylewski M, Nechaev S (2014) Cancer therapy using oligonucleotide-based STAT3 inhibitors: will they deliver? Ther Deliv 5:239–242. doi:10.4155/tde.13.152

    Article  CAS  PubMed  Google Scholar 

  23. Krieg AM (2012) CpG still rocks! Update on an accidental drug. Nucl Acid Ther 22:77–89. doi:10.1089/nat.2012.0340

    CAS  Google Scholar 

  24. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995. doi:10.1038/ni1112

    Article  CAS  PubMed  Google Scholar 

  25. Canton J, Neculai D, Grinstein S (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13:621–634. doi:10.1038/nri3515

    Article  CAS  PubMed  Google Scholar 

  26. Gursel M, Gursel I, Mostowski HS, Klinman DM (2006) CXCL16 influences the nature and specificity of CpG-induced immune activation. J Immunol 177:1575–1580

    Article  CAS  PubMed  Google Scholar 

  27. Zhu P, Liu X, Treml LS et al (2009) Mechanism and regulatory function of CpG signaling via scavenger receptor B1 in primary B cells. J Biol Chem 284:22878–22887. doi:10.1074/jbc.M109.018580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nechaev S, Gao C, Moreira D et al (2013) Intracellular processing of immunostimulatory CpG-siRNA: Toll-like receptor 9 facilitates siRNA dicing and endosomal escape. J Control Release 170:307–315. doi:10.1016/j.jconrel.2013.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Józefowski S, Sulahian TH, Arredouani M, Kobzik L (2006) Role of scavenger receptor MARCO in macrophage responses to CpG oligodeoxynucleotides. J Leukoc Biol 80:870–879. doi:10.1189/jlb.0705357

    Article  PubMed  Google Scholar 

  30. Baumann CL, Aspalter IM, Sharif O et al (2010) CD14 is a coreceptor of Toll-like receptors 7 and 9. J Exp Med 207:2689–2701. doi:10.1084/jem.20101111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lahoud MH, Ahmet F, Zhang J-G et al (2012) DEC-205 is a cell surface receptor for CpG oligonucleotides. Proc Natl Acad Sci USA 109:16270–16275. doi:10.1073/pnas.1208796109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sirois CM, Jin T, Miller AL et al (2013) RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J Exp Med 210:2447–2463. doi:10.1084/jem.20120201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McKelvey KJ, Highton J, Hessian PA (2011) Cell-specific expression of TLR9 isoforms in inflammation. J Autoimmun 36:76–86. doi:10.1016/j.jaut.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  34. Shatz M, Menendez D, Resnick MA (2012) The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells. Cancer Res 72:3948–3957. doi:10.1158/0008-5472.CAN-11-4134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hossain DMS, Pal SK, Moreira D et al (2015) TLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients. Clin Cancer Res 21:3771–3782. doi:10.1158/1078-0432.CCR-14-3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Q, Hossain DMS, Nechaev S et al (2013) TLR9-mediated siRNA delivery for targeting of normal and malignant human hematopoietic cells in vivo. Blood 121:1304–1315. doi:10.1182/blood-2012-07-442590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moreira D, Zhang Q, Hossain DMS et al (2015) TLR9 signaling through NF-κB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells. Oncotarget 6:17302–17313. doi:10.18632/oncotarget.4029

    Article  PubMed  PubMed Central  Google Scholar 

  38. Herrmann A, Cherryholmes G, Schroeder A et al (2014) TLR9 is critical for glioma stem cell maintenance and targeting. Cancer Res 74:5218–5228. doi:10.1158/0008-5472.CAN-14-1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rajora MA, Zheng G (2016) Targeting SR-BI for cancer diagnostics, imaging and therapy. Front Pharmacol 7:326. doi:10.3389/fphar.2016.00326

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kortylewski M, Swiderski P, Herrmann A et al (2009) In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 27:925–932. doi:10.1038/nbt.1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hossain DMS, Moreira D, Zhang Q et al (2016) TLR9-targeted SiRNA delivery in vivo. Methods Mol Biol 1364:183–196. doi:10.1007/978-1-4939-3112-5_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Q, Hossain DMS, Duttagupta P et al (2016) Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood 127:1687–1700. doi:10.1182/blood-2015-08-665604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hossain DMS, Santos C Dos, Zhang Q et al (2014) Leukemia cell-targeted STAT3 silencing and TLR9 triggering generate systemic antitumor immunity. Blood 123:15–25. doi:10.1182/blood-2013-07-517987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma Y, Kowolik CM, Swiderski PM et al (2011) Humanized Lewis-Y specific antibody based delivery of STAT3 siRNA. ACS Chem Biol 6:962–970. doi:10.1021/cb200176v

    Article  CAS  PubMed  Google Scholar 

  45. Nakamura N, Lill JR, Phung Q et al (2014) Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509:240–244. doi:10.1038/nature13133

    Article  CAS  PubMed  Google Scholar 

  46. Herrmann A, Kortylewski M, Kujawski M et al (2010) Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells. Cancer Res 70:7455–7464. doi:10.1158/0008-5472.CAN-10-0736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125:3356–3364. doi:10.1172/JCI80005

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bronte V, Brandau S, Chen S-H et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150. doi:10.1038/ncomms12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vasquez-Dunddel D, Pan F, Zeng Q et al (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 123:1580–1589. doi:10.1172/JCI60083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. De Veirman K, Van Valckenborgh E, Lahmar Q et al (2014) Myeloid-derived suppressor cells as therapeutic target in hematological malignancies. Front Oncol 4:349. doi:10.3389/fonc.2014.00349

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220. doi:10.1016/j.it.2016.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng F, Wang H, Horna P et al (2012) Stat3 inhibition augments the immunogenicity of B-cell lymphoma cells, leading to effective antitumor immunity. Cancer Res 72:4440–4448. doi:10.1158/0008-5472.CAN-11-3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Decker T, Schneller F, Sparwasser T et al (2000) Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood 95:999–1006

    CAS  PubMed  Google Scholar 

  54. Darnell JE (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2:740–749. doi:10.1038/nrc906

    Article  CAS  PubMed  Google Scholar 

  55. Zhang B, Li L, Chen C et al (2015) Knockdown (KD) of Mir-126 expression enhances tyrosine kinase inhibitor (TKI)-mediated targeting of chronic myelogenous leukemia (CML) stem cells. 57th Annual Meeting of American Society of Hematology, oral presentation, Orlando, FL. Blood 126:51

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Cancer Institute/National Institutes of Health award number R01CA155367, P50CA107399, P30CA033572 (COH), the Department of Defense grant W81XWH-16-1-0499 and the STOP-CANCER Allison-Tovo-Dwyer Memorial Career-Development Award. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors are grateful to Dr. Peter Heinrich for critical reading of the manuscript and Dr. Sumanta Pal for thoughtful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Kortylewski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kortylewski, M., Moreira, D. Myeloid cells as a target for oligonucleotide therapeutics: turning obstacles into opportunities. Cancer Immunol Immunother 66, 979–988 (2017). https://doi.org/10.1007/s00262-017-1966-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-1966-2

Keywords

Navigation