Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Timing and causality in process algebra

  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

There has been considerable controversy in concurrency theory between the ‘interleaving’ and ‘true concurrency’ schools. The former school advocates associating a transition system with a process which captures concurrent execution via the interleaving of occurrences; the latter adopts more complex semantic structures to avoid reducing concurrency to interleaving.

In this paper we show that the two approaches are not irreconcilable. We define a timed process algebra where occurrences are associated with intervals of time, and give it a transition system semantics. This semantics has many of the advantages of the interleaving approach; the algebra admits an expansion theorem, and bisimulation semantics can be used as usual. Our transition systems, however, incorporate timing information, and this enables us to express concurrency: merely adding timing appropriately generalises transition systems to asynchronous transition systems, showing that time gives a link between true concurrency and interleaving. Moreover, we can provide a complete axiomatisation of bisimulation for our algebra; a result that is often problematic in a timed setting.

Another advantage of incorporating timing information into the calculus is that it allows a particularly simple definition of action refinement; this we present. The paper concludes with a comparison of the equivalence we present with those in the literature, and an example system specification in our formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aceto, L.: Relating distributed, temporal and causal observations of simple processes. Fund. Inf 17 (4), 369–397 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Aceto, L., Hennessy M.: Towards action refinement in process algebra. Inform. and Comput., 103 (2), 204–269 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aceto, L., Jeffrey, A.: A complete axiomatization of timed bisimulation for a class of timed regular behaviours. Technical report 4/94, Computer Science, University of Sussex, March 1994. To appear in Theoret. Comput. Sci.

  4. Aceto, L., Murphy, D.: On the Ill-Timed but Well-Caused. In Best, E. (ed), CONCUR. Proc. Hildesheim. (Lect. Notes Comput. Sci., Vol. 715) Springer 1993

  5. Aceto, L., Murphy, D.: Timing and Causality in Process Algebra. Technical Report 9/93, University of Sussex, 1993

  6. Axford, T.: Concurrent Programming: Fundamental Techniques for Real-Time and Parallel Software Design. Wiley 1989

  7. Baeten, J.: Bergstra, J.: Global renaming operators in concrete process algebra. Inform. and Comput. 78 (3), 205–245 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Baeten, J., Bergstra, J.: Real time process algebra. Form. Asp. of Comput. 3 (2), 142–188 (1991)

    Article  MathSciNet  Google Scholar 

  9. Baeten, J., Weijland, W.: Process algebra. (Cambridge Tracts in Theoret. Comput. Sci., Vol. 18) Cambridge University Press 1990

  10. Bednarczyk, M.: Categories of asynchronous systems. Ph.D. thesis, Department of Computer Science, University of Sussex, 1987. Available as Technical Report Number 3/87

  11. Bergstra, J., Klop, J-W.: Fixed point semantics in process algebras. Report Number IW 206, Mathematisch Centrum. Amsterdam 1982

  12. Best, E., Koutny, M.: Petri net semantics of priority systems. Theoret. Comput. Sci. 96, 175–215 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Boudol, G.: Atomic actions (note). Bull. EATCS 38, 136–144 (1989)

    MATH  Google Scholar 

  14. Boudol, G., Castellani I., Hennessy, M., Kiehn, A.: Observing localities. Theoret. Comput. Sci. 114, 31–62 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Campbell, R., Jalotte, P.: Atomic actions in concurrent systems. In Distributed Computing Systems. Proc. 5th Internat. Conf., 184–191, 1985

  16. Castellani, I., Hennessy, M.: Distributed bisimulations. J. ACM 36 (4), 887–911 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Darondeau, P., Degano, P.: Causal trees. In Rovan, B. (ed.), Automata, Languages and Programming. Proc. (Lect. Notes Comput. Sci., Vol. 372) Springer 1989

  18. Davies, J., Schneider, S.: An introduction to timed CSP. Technical Report Number 75, Oxford University Computer Laboratory, 1989

  19. Davies, J., Schneider, S.: A bried history of timed CSP. Technical Report Number 96, Oxford University Computer Laboratory, 1992

  20. Degano, P., De Nicola, R., Montanari, U.: A Partial Ordering Semantics for CCS. Theoret. Comput. Sci. 75, 223–262. (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ferrari, G-L., Gorrieri, R., Montanari, U.: Parametric laws for concurrency. Manuscript, Dipartimento di Informatica, Università di Pisa, 1992

  22. Ferrari, G-L., Montanari, U.: Observing Time-Complexity of Concurrent Programs. Manuscript, Dipartimento di Informatica, Università di Pisa, 1993

  23. Fidge, C.: A constraint-oriented real-time process calculus. In Proc. of the 5th Internat. Conf. Formal Description Techniques, 363–378. North-Holland 1993

  24. van Glabbeek, R.: Comparative concurrency semantics and refinement of actions. Ph.D. thesis, Vrije Universiteit te Amsterdam, 1990

  25. van Glabbeek, R.: A complete axiomatization for branching bisimulation congruence of finite-state behaviours. In Borzyszkowski, A. (ed.), Mathematical Foundations of Computer Science Proc. Gdansk (Lect. Notes Comput. Sci., Vol. 711) Springer 1993

  26. van Glabbeek, R., Vaandrager, F.: Petri net models for algebraic theories of concurrency. In de Bakker, J. et al. (eds), PARLE II Parallel Languages. Proc. (Lect. Notes Comput. Sci., Vol 259) Springer 1987

  27. van Glabbeek, R., Weijland, W.: Branching time and abstraction in bisimulation semantics (extended abstract). In Ritter, G. (ed.), Information Processing. Proc. 613–618, 1989. Full version available as Report CS-R9120, CWI, Amsterdam, 1991

    Google Scholar 

  28. van Glabbeek, R., Weijland, W.: Refinement in branching time semantics. Report CS-R8922, CWI, Amsterdam, 1989

    Google Scholar 

  29. Godskesen, J., Larsen, K.: Real-time calculi and expansion theorems. In Proc. 12th Conference on Foundations of Software Technology and Theoretical Computer Science (Lecture Notes in Comput. Sci.) Springer 1992

  30. Gorrieri, R.: Refinement, atomicity and transactions for process description languages. Ph.D. thesis, Dipartimento di Informatica, Università di Pisa, 1991

  31. Gorrieri, R., Roccetti, M.: Towards performance evaluation in process algebra. Technical report 93-27, Dipartimento di Matematica, Università di Bologna, 1993. An extended abstract appears in the Proc. AMAST ’93 (Lecture Notes in Comput. Sci.) Springer 1993

  32. Groote, J.-F., Vaandrager, F.: An efficient algorithm for branching bisimulation and stuttering equivalence. In Automata, Languages and Programming. Proc. (Lect. Notes Comput. Sci., Vol. 443, 626–638) Springer 1990

  33. Hennessy, M.: Axiomatising Finite Concurrent Processes. SIAM J Comput. 17, 5 (1988)

  34. Hennessy, M., Regan, T.: A temporal process algebra. Technical Report 2/90, Department of Computer Science, University of Sussex, 1990

  35. Hoare, C.: Communicating sequential processes. Internat. series on Comput. Sci., Prentice Hall 1985

  36. Jeffrey, A.: Timed Process Algebra ≠ Time × Process Algebra. Technical Report Number 79, Programming Methodology Group, Chalmers University, 1991

  37. Joseph, M., Goswami, A.: Relating computation and time. Technical Report RR 138, Department of Computer Science, University of Warwick, 1985

  38. Lamport, L.: On interprocess communication. Part I: Basic formalism. Distrib. Comput. 1, 77–85 (1986)

    MATH  Google Scholar 

  39. Mattern, F.: Virtual Time and Global States of Distributed Systems. In Cosnard, M. et al. (eds.), Parallel and Distributed Algorithms. Proc., North-Holland 1989

  40. Mazurkiewicz, A.: Traces, histories, graphs: Instances of a process monoid. In Mathematical Foundations of Computer Science. Proc. (Lect. Notes Comput. Sci., Vol. 176) Springer 1994

  41. Milner, R.: Communciation and concurrency. Internat. series on Comput. Sci., Prentice-Hall International, 1989

  42. Milner, R., Moller, F.: Unique decomposition of processes (note). Theoret. Comput. Scie. 107 (2) 357–363 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  43. Moller, F.: Axioms for concurrency. Report CST-59-89, Department of Computer Science, University of Edinburgh, 1989

  44. Moller, F., Tofts, C.: A temporal calculus of communicating systems. In Baeten, J. (ed.), CONCUR. Proc. Amsterdam, 1993 (Lect. Notes Comput. Sci., Vol. 459) Springer 1990

  45. Murphy, D.: Timed Process Algebra, Petri Nets, and Event Refinement. In Morris, J. (ed.), Refinement. Proc., Springer 1991

  46. Murphy, D.: Intervals and actions in a timed process algebra. Arbeitspapiere der GMD 680, Gesellschaft für Mathematik and Dataverarbeitung, St. Augustin, 1992. Presented at MFPS ’92 and submitted to Theoret. Comput. Sci.

  47. Murphy, D. Pitt, D.: Real-timed concurrent refineable behaviours. In Vytopil, J. (ed.), Formal Techniques in Real Time and Fault Tolerant Systems Proc. Nijmegen (Lect. Notes Comput. Sci., Vol. 571) Springer 1992

  48. Nicollin, X., Sifakis, J.: The algebra of timed processes ATP: Theory and application. Technical Report RT-C26, Laboratorie de Génie Informatique de Grenoble, 1990

  49. Plotkin, G.: A structural approach to operational semantics. Technical Report DAIMI-FN-19, Computer Science Department, Århus University, 1981

  50. Sassone, V., Nielsen, M. Winskel, G.: A classification of models for concurrency. In Best, E. (ed.), CONCUR. Proc. Hildesheim, 1993 (Lect. Notes Comput. Sci., Vol. 715) Springer 1993.

  51. Schneider, S.: An operational semantics for timed CSP. Inform. and Comput. (1993) (to appear)

  52. Stoughton, A.: Substitution revisted. Theoret. Comput. Sci. 59, 317–325 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  53. Vogler, W.: Failures Semantics based on Interval Semiwords is a congruence for Refinement. Distributed Computing, 4, 139–162 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  54. Vogler, W.: Moduler Construction and Partial Order Semantics fo Petri Nets (Lect. Notes Comput. Sci., Vol. 625) Springer 1993

  55. Wang Yi.: CCS + Time = an Interleaving Model for Real Time Systems. In Automata, Languages and Programming. Proceedings, Madrid (Lect. Notes Comput. Sci., Vol. 510) Springer 1993

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aceto, L., Murphy, D. Timing and causality in process algebra. Acta Informatica 33, 317–350 (1996). https://doi.org/10.1007/s002360050047

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002360050047

Keywords

Navigation