Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Prior experience and current goals affect muscle-spindle and tactile integration

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We previously have shown that reports of illusory elbow extension from biceps vibration can be attenuated by touching a stationary cue-surface with the index fingertip of a vibrated arm. However, this was not the case if the subject had previously felt genuine motion of the cue-surface without biceps vibration. Two potential explanations for this are that the sense of elbow orientation results from tactile and muscle stretch cues that are integrated based on (1) an awareness of the tactile cue’s mobility or (2) specific patterns of tactile and muscle spindle activity resembling the elbow motion during previous interactions with the tactile cue. We tested these hypotheses by comparing how touching the cue-surface attenuated the reports of arm movement during biceps vibration after a demonstration of the cue- surface mobility without involving any elbow motion versus simultaneously touching the cue-surface as it moved and extending the elbow to correspond exactly to the elbow extension illusion during vibration. Touching the cue-surface stopped attenuating the reports of elbow extension during biceps vibration only after experiencing actual cue-surface motion while moving the elbow . This supports the second hypothesis that tactile and muscle stretch feedback that are integrated based on specific patterns of tactile and muscle spindle activity recalled from previous interactions with the tactile cue. We also tested the influence of motor set on the sense of elbow position in this paradigm. We found that even after touching the stationary cue-surface had ceased to attenuate illusory elbow motion during biceps vibration, illusory elbow motion during vibration still could be attenuated. This was possible if the subjects intended to actively use their wrists rather than the elbow to maintain fingertip contact. We conclude that muscle stretch and tactile cues are integrated to locate the arm within a highly specific context associated with tactile and proprioceptive feedback from prior experience and current movement goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blakemore SJ, Frith CD, Wolpert DM (1999) Spatio-temporal prediction modulates the perception of self-produced stimuli. J Cogn Neurosci 11:551–559

    Article  PubMed  CAS  Google Scholar 

  • Blakemore SJ, Wolpert DM, Frith CD (2002) Abnormalities in the awareness of action. Trends Cogn Sci 6:237–242

    Article  PubMed  Google Scholar 

  • Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG (2000) Voluntary teeth clenching facilitates human motor system excitability. Clin Neurophysiol 111:988–993

    Article  PubMed  CAS  Google Scholar 

  • Calvin-Figuiere S, Romaiguere P, Gilhodes JC, Roll JP (1999) Antagonist motor responses correlate with kinesthetic illusions induced by tendon vibration. Exp Brain Res 124:342–350

    Article  PubMed  CAS  Google Scholar 

  • Chapman CE (1994) Active versus passive touch—factors influencing the transmission of somatosensory signals to primary somatosensory cortex. Can J Physiol Pharmacol 72:558–570

    PubMed  CAS  Google Scholar 

  • Cody FWJ, Schwartz MP, Smit GP (1990) Proprioceptive guidance of human voluntary wrist movements studied using muscle vibration. J Physiol (Lond) 427:455–470

    CAS  Google Scholar 

  • Cole KJ, Abbs JH (1988) Grip force adjustments evoked by load force perturbations of a grasped object. J Neurophysiol 60:1513–1522

    PubMed  CAS  Google Scholar 

  • Craske B (1977) Perception of impossible limb positions induced by tendon vibration. Science 196:71–73

    Article  PubMed  CAS  Google Scholar 

  • Decety J (1996) Do imagined and executed actions share the same neural substrate? Cogn Brain Res 3:87–93

    Article  CAS  Google Scholar 

  • Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Maziotta JC, Fazio F (1994) Mapping motor representations with PET. Nature 371:600–602

    Article  PubMed  CAS  Google Scholar 

  • Edin BB (1992) Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy hands. J Neurophysiol 67:1105–1113

    PubMed  CAS  Google Scholar 

  • Edin BB (2001) Cutaneous afferents provide information about knee joint movements in humans. J Physiol (Lond) 531:289–297

    Article  CAS  Google Scholar 

  • Forssberg H, Kinoshita H, Eliasson AC, Johansson RS, Westling G, Gordon AM (1992) Development of human precision grip 2: anticipatory control of isometric forces targeted for object weight. Exp Brain Res 90:393–398

    Article  PubMed  CAS  Google Scholar 

  • Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272:545–547

    Article  PubMed  CAS  Google Scholar 

  • Gardner EP (1988) Somatosensory cortical mechanisms of feature detection in tactile and kinesthetic discrimination. Can J Physiol Pharmacol 66:439–454

    PubMed  CAS  Google Scholar 

  • Gilhodes JC, Roll JP, Tardy-Gervet MF (1986) Perceptual and motor effects of agonist-antagonist muscle vibration in man. Exp Brain Res 61:395–402

    Article  PubMed  CAS  Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PB (1972a) Proprioceptive illusions induced by muscle vibration—contribution by muscle-spindles to perception. Science 175:1382–1383

    Article  PubMed  CAS  Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PB (1972b) Contributions of muscle afferents to kinesthesia shown by vibration induced illusions of movement and by effects of paralyzing joint afferents. Brain 95:705–748

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Forssberg H, Johansson RS, Westling G (1991) The integration of haptically aquired size information in the programming of precision grip. Exp Brain Res 83:483–488

    PubMed  CAS  Google Scholar 

  • Gordon AM, Soechting JF (1995) Use of tactile afferent information in sequential finger movements. Exp Brain Res 107:281–292

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Westling G, Cole KJ, Johansson RS (1993) Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol 69:1789–1796

    PubMed  CAS  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1994) Acuracy of planar reaching movements: independence of direction and extent variability. Exp Brain Res 99:97–111

    Article  PubMed  CAS  Google Scholar 

  • Gregory JE, Wood SA, Proske U (2001) An investigation into mechanisms of reflex reinforcement by the Jendrassik manoeuvre. Exp Brain Res 138:366–374

    Article  PubMed  CAS  Google Scholar 

  • Hagbarth KE, Wallin G, Burke D, Lofsted L (1975) Effects of Jendrassik maneuver on muscle-spindle activity in man. J Neurol Neurosurg Psychiatry 38:1143–1153

    PubMed  CAS  Google Scholar 

  • Helms Tillery SI, Flanders M, Soechting JF (1994) Errors in kinesthetic transformations for hand apposition. Neuroreport 6:177–181

    Article  Google Scholar 

  • Holden M, Ventura J, Lackner JR (1994) Stabilization of posture by precision contact of the index finger. J Vestib Res 4:285–301

    PubMed  CAS  Google Scholar 

  • Iles JF, Pisini JV (1992) Cortical modulation of transmission in spinal reflex pathways of man. J Physiol (Lond) 455:425–446

    CAS  Google Scholar 

  • Jeannerod M (1994) Representing the brain: neural correlates of motor intention and imagery. Brain Behav Sci 17:187–245

    Article  Google Scholar 

  • Jeka JJ, Lackner JR (1995) The role of haptic cues from rough and slippery surfaces on human postural control. Exp Brain Res 103:267–276

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Westling G (1987) Signals from tactile afferents in the fingers eliciting adaptive motor responses during precision grip. Exp Brain Res 66:141–154

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Westling G (1988) Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res 71:59–71

    PubMed  CAS  Google Scholar 

  • Kalaska JF (1988) The representation of arm movements in postcentral and parietal cortex. Can J Physiol Pharmacol 66:455–463

    PubMed  CAS  Google Scholar 

  • Kalaska JF (1994) Central neural mechanisms of touch and proprioception. Can J Physiol Pharmacol 72:542–545

    PubMed  CAS  Google Scholar 

  • Kasai T, Komiyama T (1991) Antagonist inhibition during rest and precontraction. Electroencephalogr Clin Neurophysiol 81:427–432

    PubMed  CAS  Google Scholar 

  • Kitada R, Naito E, Matsumura M (2002) Perceptual changes in illusory wrist flexion angles resulting from motor imagery of the same wrist movements. Neuroscience 109:701–707

    Article  PubMed  CAS  Google Scholar 

  • Kording KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427:181–270

    Article  CAS  Google Scholar 

  • Kording KP, Ku S, Wolpert DM (2004) Bayesian integration in force estimation. J Neurophysiol 92:3161–3165

    Article  PubMed  Google Scholar 

  • Lackner JR (1988) Some proprioceptive influences on the perceptual representation of body shape and orientation. Brain 111:281–297

    Article  PubMed  Google Scholar 

  • Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, Birbaumer N, Grodd W (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. J Cogn Neurosci 11:491–501

    Article  PubMed  CAS  Google Scholar 

  • Matthews PBC (1988) Proprioceptors and their contribution to somatosensory mapping—complex messages require complex processing. Can J Physiol Pharmacol 66:430–438

    PubMed  CAS  Google Scholar 

  • Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H (1999) Brain structures related to active and passive finger movements in man. Brain 122:1989–1997

    Article  PubMed  Google Scholar 

  • Nashner LM, Woollacott M (1979) The organization of rapid adjustments of standing humans: an experimental-conceptual model. In: Talbott RE, Humphrey DR (eds) Posture and movement. Raven Press, NY, pp243–258

    Google Scholar 

  • Nielsen J, Kagamihara Y (1993) The regulation of presynaptic inhibition during cocontraction of antagonistic muscles in man. J Physiol (Lond) 464:575–593

    CAS  Google Scholar 

  • Nelson RJ, Li B, Douglas VD (1991) Sonsory response enhancement and suppression of monkey primary somatosensory cortical-neurons. Brain Res Bull 27:751–757

    Article  PubMed  CAS  Google Scholar 

  • Naito E, Ehrsson HH, Geyer S, Zilles K, Roland PE (1999) Illusory arm movements activate cortical motor areas: a positron emission tomography study. J Neuriosci 19:6134–6144

    CAS  Google Scholar 

  • Prudhomme MJL, Kalaska JF (1994) Proprioceptive activity in primate primary somatosensory cortex during active arm reaching movements. J Neurophysiol 72:2280–2301

    CAS  Google Scholar 

  • Rabin E, Gordon AM (2004a) Tactile feedback contributes to consistency of finger movements during typing. Exp Brain Res 155:362–369

    Article  PubMed  Google Scholar 

  • Rabin E, Gordon AM (2004b) Influence of fingertip contact on illusory arm movements. J Appl Physiol 96:1555–1560

    Article  PubMed  Google Scholar 

  • Rao AK, Gordon AM (2001) Contribution of tactile information to accuracy in pointing movements. Exp Brain Res 138:438–445

    Article  PubMed  CAS  Google Scholar 

  • Ribot-Ciscar E, Rossi-Durand C, Roll JP (2000) Increased muscle spindle sensitivity to movement during reinforcement manoeuvres in relaxed human subjects. J Physiol (Lond) 523:271–282

    Article  CAS  Google Scholar 

  • Ro JY, Debowy D, Ghosh S, Gardner EP (2000) Depression of neuronal firing rates in somatosensory and posterior parietal cortex during object acquisition in a prehension task. Exp Brain Res 135:1–11

    Article  PubMed  CAS  Google Scholar 

  • Romaiguere P, Anton JL, Roth M, Casini L, Roll JP (2003) Motor and parietal cortical areas both underlie kinaesthesia. Cogn Brain Res 16:74–82

    Article  Google Scholar 

  • Romaiguere P, Anton JL, Roth M, Casini L, Roll JP (2002) Neuronal correlates of decision-making in secondary somatosensory cortex. Nat Neurosci 5:1217–1225

    Article  CAS  Google Scholar 

  • Rossi-Durand C (2002) The influence of increased muscle spindle sensitivity on Achilles tendon jerk and H-reflex in relaxed human subjects. Somatosens Motor Res 19:286–295

    Article  Google Scholar 

  • Ruegg DG (1989) IA Afferents of the antagonist are inhibited presynaptically before the onset of a ballistic muscle-contraction in man. Exp Brain Res 74:663–666

    Article  PubMed  CAS  Google Scholar 

  • Ruegg DG, Drews H (1991) Influence of different properties of a reaction time task on the pre-movement gating of input from IA afferents to motoneurons. Exp Brain Res 85:188–195

    Article  PubMed  CAS  Google Scholar 

  • Ryding E, Decety J, Sjoholm H, Stenberg G, Ingvar DH (1993) Motor imagery activates the cerebellum regionally. Cogn Brain Res 1:94–99

    Article  CAS  Google Scholar 

  • Sakai K, Takino R, Hikosaka O (1997) Dissociation of neural correlates for motor execution and sensori-motor readiness within the cerebellum. Neuroimage 5:260

    Google Scholar 

  • Staines WR, Brooke JD, Cheng J, Misiaszek JE, MacKay WA Misiaszek JE, MacKay WA (1997) Movement-induced gain modulation of somatosensory potentials and soleus H-reflexes evoked from the leg. 1. Kinaesthetic task demands. Exp Brain Res 115:147–155

    Article  CAS  Google Scholar 

  • Staines WR, Brooke JD, McIlroy WE (2000) Task-relevant selective modulation of somatosensory afferent paths from the lower limb. Neuroreport 11:1713–1719

    Article  PubMed  CAS  Google Scholar 

  • Vetter P, Wolpert DM (2000) Context Estimation for sensorimotor control. J Neurophysiol 84:1026–1034

    PubMed  CAS  Google Scholar 

  • Weiller C, Juptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, Muller S, Diener HC, Thilmann AF (1994) Brain representation of active and passive movements. Neuroimage 4:105–110

    Article  Google Scholar 

  • Witney AG, Vetter P, Wolpert DM (2001) The influence of previous experience on predictive motor control. Neuroreport 12:649–653

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM (1997) Computational approaches to motor control. Trends Cogn Sci 1:209–216

    Article  Google Scholar 

Download references

Acknowledgment

This project was supported by NIH Grant #5F32HD042929.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ely Rabin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabin, E., Gordon, A.M. Prior experience and current goals affect muscle-spindle and tactile integration. Exp Brain Res 169, 407–416 (2006). https://doi.org/10.1007/s00221-005-0154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0154-3

Keywords

Navigation