Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Complete Bose–Einstein Condensation in the Gross–Pitaevskii Regime

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a gas of N bosons in a box with volume one interacting through a two-body potential with scattering length of order \({N^{-1}}\) (Gross–Pitaevskii limit). Assuming the (unscaled) potential to be sufficiently weak, we prove complete Bose–Einstein condensation for the ground state and for many-body states with finite excitation energy in the limit of large N with a uniform (N-independent) bound on the number of excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Benedikter N., Oliveira G., Schlein B.: Quantitative derivation of the Gross–Pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogoliubov, N.N.: On the theory of superfluidity. Izv. Akad. Nauk. USSR 11 (1947), 77. Engl. Transl. J. Phys. (USSR) 11, 23 (1947)

  3. Brennecke, C., Schlein, B.: Gross–Pitaevskii dynamics for Bose–Einstein condensates. Preprint arXiv:1702.05625

  4. Chen X., Holmer J.: Correlation structures, many-body scattering processes and the derivation of the Gross–Pitaevskii hierarchy. Int. Math. Res. Not. 10, 3051–3110 (2016)

    Article  MathSciNet  Google Scholar 

  5. Dereziński J., Napiórkowski M.: Excitation spectrum of interacting bosons in the mean-field infinite-volume limit. Ann. Henri Poincaré 15, 2409–2439 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Erdős L., Michelangeli A., Schlein B.: Dynamical formation of correlations in a Bose–Einstein condensate. Commun. Math. Phys. 289(3), 1171–1210 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Erdős L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdős L., Schlein B., Yau H.-T.: Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems. Inv. Math. 167, 515–614 (2006)

    Article  ADS  MATH  Google Scholar 

  9. Erdős L., Schlein B., Yau H.-T.: Derivation of the Gross-Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. (2) 172(1), 291–370 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation. Phys. Rev. Lett. 98((4), 040404 (2007)

    Article  ADS  Google Scholar 

  11. Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22, 1099–1156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grech P., Seiringer R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322((2), 559–591 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Lewin M., Nam P.T., Serfaty S., Solovej J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68(3), 413–471 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lieb E.H., Seiringer R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)

    Article  ADS  Google Scholar 

  15. Lieb E.H., Seiringer R.: Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264, 505–537 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A. 61, 043602 (2000)

    Article  ADS  Google Scholar 

  17. Lieb E.H., Yngvason J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)

    Article  ADS  Google Scholar 

  18. Nam P.T., Rougerie N., Seiringer R.: Ground states of large bosonic systems: the Gross–Pitaevskii limit revisited. Anal. PDE 9(2), 459–485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pickl P.: Derivation of the time dependent Gross–Pitaevskii equation with external fields. Rev. Math. Phys. 27, 1550003 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pizzo, A.: Bose particles in a box III. A convergent expansion of the ground state of the Hamiltonian in the mean field limiting regime. Preprint arXiv:1511.07026

  21. Seiringer R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Schlein.

Additional information

Communicated by R. Seiringer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boccato, C., Brennecke, C., Cenatiempo, S. et al. Complete Bose–Einstein Condensation in the Gross–Pitaevskii Regime. Commun. Math. Phys. 359, 975–1026 (2018). https://doi.org/10.1007/s00220-017-3016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3016-5

Navigation