Abstract
We consider a quantum state shared between many distant locations, and define a quantum information processing primitive, state merging, that optimally merges the state into one location. As announced in [Horodecki, Oppenheim, Winter, Nature 436, 673 (2005)], the optimal entanglement cost of this task is the conditional entropy if classical communication is free. Since this quantity can be negative, and the state merging rate measures partial quantum information, we find that quantum information can be negative. The classical communication rate also has a minimum rate: a certain quantum mutual information. State merging enabled one to solve a number of open problems: distributed quantum data compression, quantum coding with side information at the decoder and sender, multi-party entanglement of assistance, and the capacity of the quantum multiple access channel. It also provides an operational proof of strong subadditivity. Here, we give precise definitions and prove these results rigorously.
Similar content being viewed by others
References
Shannon C.E. (1948). Bell Syst. Tech. J. 27: 379
Slepian D., Wolf J. (1971). IEEE Trans. Inf. Theory 19: 461
Schumacher B.W. (1995). Phys. Rev. A 51: 2738
Barnum H., Nielsen M.A., Schumacher B. (1998). Phys. Rev. A 57: 4153
Schumacher B., Nielsen M.A. (1996). Phys. Rev. A 54: 2629
Shor, P.W.: Talk at MSRI Workshop on Quantum Computation. Available online under http://www.msri. org/publications/ln/msri/2002/quantumcrypto/shor/1/, 2002
Devetak I. (2005). IEEE Trans. Inf. Theory 51, 44
Lloyd S. (1997). Phys. Rev. A 55: 1613
Ahn, C., Doherty, A., Hayden, P., Winter, A.: http://arxiv.org/list/quant-ph/0403042, 2004
Cerf N., Adami C. (1997). Phys. Rev. Lett 79: 5194
Wehrl A. (1978). Rev. Mod. Phys. 50: 221
Horodecki R., Horodecki P. (1994). Phys. Lett. A 194: 147
Horodecki M., Oppenheim J., Winter A. (2005) Nature 436: 673
DiVincenzo, D.P., Fuchs, C.A., Mabuchi, H., Smolin, J.A., Thapliyal, A.V., Uhlmann, A.: In: Proc. 1st NASA International Conference on Quantum Computing and Quantum Communication, Williams, C.P. (ed.) LNCS 1509, pp. 247–257 Berlin-Heidelberg-New York. Springer Verlag, 1998
Verstraete F., Popp M., Cirac J.I. (2004). Phys. Rev. Lett. 92: 027901
Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A. Wootters W.K. (1993). Phys. Rev. Lett. 70: 1895
Schumacher B., Westmoreland M.D. (2002). Quantum Inf. Process. 1: 5
Uhlmann A. (1976). Rep. Math. Phys. 9: 273
Jozsa R. (1994). J. Mod. Optics 41: 2315
Lo H.-K., Popescu S. (1999). Phys. Rev. Lett 83: 1459
Bennett C.H., Bernstein H.J., Popescu S., Schumacher B. (1996). Phys. Rev. A 53: 2046
Devetak, I.: Personal communciation
Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A.: In preparation, 2005
Devetak, I., Harrow, A.W., Winter, A.: http://arxiv.org/list/quant-ph/0512015, 2005
Devetak I., Harrow A.W., Winter A. (2004). Phys. Rev. Lett. 93: 230504
Harrow A.W. (2004). Phys. Rev. Lett. 92: 097902
Ekert A. (1991). Phys. Rev. Lett 67:661
Groisman B., Popescu S., Winter A. (2005). Phys. Rev. A 72: 032317
Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen (De), A., Sen, U., Synak, B.: http://arxiv.org/list/quant-ph/0410090, 2004
Winter, A.: Ph.D. dissertation, Universität Bielefeld, http://arxiv.org/list/quant-ph/9907077, 1999
Wyner A.D. (1975). IEEE Trans. Inf. Theory 21, 294
Terhal B.M., Horodecki M., DiVincenzo D.P., Leung D.W. (2002). J. Math. Phys. 43:4286
Smolin J.A., Verstraete F., Winter A. (2005). Phys. Rev. A 72: 052317
Smolin J.A., Thapliyal A.V. (2003). Phys. Rev. A 68: 062324
Yard, J., Devetak, I., Hayden, P.: http://arxiv.org/list/quant-ph/0501045, 2005
Demianowicz, M., Horodecki, P.: http://arxiv.org/list/quant-ph/0603106, 2006
Horodecki M., Horodecki P., Horodecki R. (2000). Phys. Rev. Lett. 85: 433
Lieb E.H., Ruskai M.B. (1973). J. Math. Phys. 14: 1938
Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V. (2002). IEEE Trans. Inf. Theory 48: 2637
Fuchs C.A., van de Graaf J. (1999). IEEE Trans. Inf. Theory 45: 1216
Winter A. (1999). IEEE Trans. Inf. Theory 45: 2481
Ogawa, T., Nagaoka, H.: In: Proc. SITA 2001 (2001), p. 599, http://arxiv.org/list/quant-ph/0208139, 2002
Fannes M. (1973). Commun. Math. Phys. 31: 291
Werner R. (1989). Phys. Rev. A 40: 4277
Cover T.M., Thomas J.A. (1991) Elements of Information Theory. New York, Wiley Interscience
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. B. Ruskai
Rights and permissions
About this article
Cite this article
Horodecki, M., Oppenheim, J. & Winter, A. Quantum State Merging and Negative Information. Commun. Math. Phys. 269, 107–136 (2007). https://doi.org/10.1007/s00220-006-0118-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-006-0118-x