Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Quantum State Merging and Negative Information

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a quantum state shared between many distant locations, and define a quantum information processing primitive, state merging, that optimally merges the state into one location. As announced in [Horodecki, Oppenheim, Winter, Nature 436, 673 (2005)], the optimal entanglement cost of this task is the conditional entropy if classical communication is free. Since this quantity can be negative, and the state merging rate measures partial quantum information, we find that quantum information can be negative. The classical communication rate also has a minimum rate: a certain quantum mutual information. State merging enabled one to solve a number of open problems: distributed quantum data compression, quantum coding with side information at the decoder and sender, multi-party entanglement of assistance, and the capacity of the quantum multiple access channel. It also provides an operational proof of strong subadditivity. Here, we give precise definitions and prove these results rigorously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon C.E. (1948). Bell Syst. Tech. J. 27: 379

    MathSciNet  MATH  Google Scholar 

  2. Slepian D., Wolf J. (1971). IEEE Trans. Inf. Theory 19: 461

    MathSciNet  Google Scholar 

  3. Schumacher B.W. (1995). Phys. Rev. A 51: 2738

    Article  MathSciNet  ADS  Google Scholar 

  4. Barnum H., Nielsen M.A., Schumacher B. (1998). Phys. Rev. A 57: 4153

    Article  ADS  Google Scholar 

  5. Schumacher B., Nielsen M.A. (1996). Phys. Rev. A 54: 2629

    Article  MathSciNet  ADS  Google Scholar 

  6. Shor, P.W.: Talk at MSRI Workshop on Quantum Computation. Available online under http://www.msri. org/publications/ln/msri/2002/quantumcrypto/shor/1/, 2002

  7. Devetak I. (2005). IEEE Trans. Inf. Theory 51, 44

    Article  MathSciNet  Google Scholar 

  8. Lloyd S. (1997). Phys. Rev. A 55: 1613

    Article  MathSciNet  ADS  Google Scholar 

  9. Ahn, C., Doherty, A., Hayden, P., Winter, A.: http://arxiv.org/list/quant-ph/0403042, 2004

  10. Cerf N., Adami C. (1997). Phys. Rev. Lett 79: 5194

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Wehrl A. (1978). Rev. Mod. Phys. 50: 221

    Article  MathSciNet  ADS  Google Scholar 

  12. Horodecki R., Horodecki P. (1994). Phys. Lett. A 194: 147

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Horodecki M., Oppenheim J., Winter A. (2005) Nature 436: 673

    Article  ADS  Google Scholar 

  14. DiVincenzo, D.P., Fuchs, C.A., Mabuchi, H., Smolin, J.A., Thapliyal, A.V., Uhlmann, A.: In: Proc. 1st NASA International Conference on Quantum Computing and Quantum Communication, Williams, C.P. (ed.) LNCS 1509, pp. 247–257 Berlin-Heidelberg-New York. Springer Verlag, 1998

  15. Verstraete F., Popp M., Cirac J.I. (2004). Phys. Rev. Lett. 92: 027901

    Article  ADS  Google Scholar 

  16. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A. Wootters W.K. (1993). Phys. Rev. Lett. 70: 1895

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Schumacher B., Westmoreland M.D. (2002). Quantum Inf. Process. 1: 5

    Article  MathSciNet  Google Scholar 

  18. Uhlmann A. (1976). Rep. Math. Phys. 9: 273

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Jozsa R. (1994). J. Mod. Optics 41: 2315

    MATH  MathSciNet  ADS  Google Scholar 

  20. Lo H.-K., Popescu S. (1999). Phys. Rev. Lett 83: 1459

    Article  ADS  Google Scholar 

  21. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B. (1996). Phys. Rev. A 53: 2046

    Article  ADS  Google Scholar 

  22. Devetak, I.: Personal communciation

  23. Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A.: In preparation, 2005

  24. Devetak, I., Harrow, A.W., Winter, A.: http://arxiv.org/list/quant-ph/0512015, 2005

  25. Devetak I., Harrow A.W., Winter A. (2004). Phys. Rev. Lett. 93: 230504

    Article  MathSciNet  ADS  Google Scholar 

  26. Harrow A.W. (2004). Phys. Rev. Lett. 92: 097902

    Article  MathSciNet  ADS  Google Scholar 

  27. Ekert A. (1991). Phys. Rev. Lett 67:661

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Groisman B., Popescu S., Winter A. (2005). Phys. Rev. A 72: 032317

    Article  MathSciNet  ADS  Google Scholar 

  29. Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen (De), A., Sen, U., Synak, B.: http://arxiv.org/list/quant-ph/0410090, 2004

  30. Winter, A.: Ph.D. dissertation, Universität Bielefeld, http://arxiv.org/list/quant-ph/9907077, 1999

  31. Wyner A.D. (1975). IEEE Trans. Inf. Theory 21, 294

    Article  MATH  MathSciNet  Google Scholar 

  32. Terhal B.M., Horodecki M., DiVincenzo D.P., Leung D.W. (2002). J. Math. Phys. 43:4286

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Smolin J.A., Verstraete F., Winter A. (2005). Phys. Rev. A 72: 052317

    Article  ADS  Google Scholar 

  34. Smolin J.A., Thapliyal A.V. (2003). Phys. Rev. A 68: 062324

    Article  ADS  Google Scholar 

  35. Yard, J., Devetak, I., Hayden, P.: http://arxiv.org/list/quant-ph/0501045, 2005

  36. Demianowicz, M., Horodecki, P.: http://arxiv.org/list/quant-ph/0603106, 2006

  37. Horodecki M., Horodecki P., Horodecki R. (2000). Phys. Rev. Lett. 85: 433

    Article  MathSciNet  ADS  Google Scholar 

  38. Lieb E.H., Ruskai M.B. (1973). J. Math. Phys. 14: 1938

    Article  MathSciNet  ADS  Google Scholar 

  39. Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V. (2002). IEEE Trans. Inf. Theory 48: 2637

    Article  MATH  MathSciNet  Google Scholar 

  40. Fuchs C.A., van de Graaf J. (1999). IEEE Trans. Inf. Theory 45: 1216

    Article  MATH  Google Scholar 

  41. Winter A. (1999). IEEE Trans. Inf. Theory 45: 2481

    Article  MATH  MathSciNet  Google Scholar 

  42. Ogawa, T., Nagaoka, H.: In: Proc. SITA 2001 (2001), p. 599, http://arxiv.org/list/quant-ph/0208139, 2002

  43. Fannes M. (1973). Commun. Math. Phys. 31: 291

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Werner R. (1989). Phys. Rev. A 40: 4277

    Article  ADS  Google Scholar 

  45. Cover T.M., Thomas J.A. (1991) Elements of Information Theory. New York, Wiley Interscience

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Oppenheim.

Additional information

Communicated by M. B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horodecki, M., Oppenheim, J. & Winter, A. Quantum State Merging and Negative Information. Commun. Math. Phys. 269, 107–136 (2007). https://doi.org/10.1007/s00220-006-0118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0118-x

Keywords

Navigation